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Abstract
Dry-lab experimentation is being increasingly used to complement wet-lab experimentation. However, conducting
dry-lab experiments is a challenging endeavor that requires the combination of diverse techniques. JAMES II, a
plug-in-based open source modeling and simulation framework, facilitates the exploitation and configuration of
these techniques. The different aspects that form an experiment are made explicit to facilitate repeatability and
reuse. Each of those influences the performance and the quality of the simulation experiment.Common experimen-
tation pitfalls and current challenges are discussed along the way.
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INTRODUCTION
The notion of dry-lab experiments in computational

biology implies that computers, just as petri-dishes,

are a feasible data source for guiding biological model

building and hypothesis testing. They have some

practical advantages over wet-lab experimentation:

their independence of hardly controllable external

factors, which may introduce bias to wet-lab data,

and the possibility to do experiments that cannot be

conducted in wet-labs.

Dry-lab experiments must adhere to the princi-

ples known from natural sciences, e.g. reproducibility

and validity. Their achievement depends on meth-

odological constraints and the soundness of the

involved software components. They are supported

by computational efficiency. All of these may lie

outside the control of a typical biologist. Here statis-

tical and computer-science expertise are required.

Huge computational overhead, insignificant or inva-

lid results, or even the dismissal of viable dry-lab

experiments on the grounds of seemingly lacking

computational resources might otherwise be the

result. This problem is not specific to computational

biology, but the abundance of alternative modeling
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and simulation (M&S) methods aggravates it—even

more so in combination with the uncertainties and

intricacies of applying those methods to complex

biological systems that are not fully understood.

One way to address this problem is to treat experi-

ments as first-class entities (i.e. to clearly distinguish

between models, simulation runs (and algorithms

used) and experiments), which requires explicit sup-

port for experiment definition, adaptation and reuse.

This article focuses on describing options of the

experimental layer of JAMES II to do high perfor-

mance experiments, what a user can do, what the

software can do and why it matters to be that

versatile.

JAMES II
JAMES II (JAva-based Multipurpose Environment

for Simulation II) is developed with an emphasis

on flexibility, a feature ensured by a plug-in system

[8] that distinguishes between plug-ins and plug-in

types: each plug-in belongs to a specific type and

each type defines a specific task the software has to

fulfill, e.g. writing a model to a data sink, simulating

a model or conducting a statistical test. Plug-ins are

the level at which contributions from different

authors or groups are combined, as all plug-in

types prescribe specific interfaces that have to be

implemented. Both plug-ins and plug-in types are

declared in XML-files and get loaded dynamically

into a central registry on start-up. This makes it

easy to add new plug-ins and plug-in types. To

date, JAMES II offers more than 500 plug-ins

belonging to more than 80 plug-in types, although

not all of them have been published yet. It is written

in Java 1.6 and therefore largely platform indepen-

dent. The core of JAMES II does not rely on any

additional libraries, which eases deployment, reuse

and installation.

The classical M&S workflow comprises three

major steps: modeling, experimentation and result

analysis. Since the focus of this article is on the

JAMES II experimentation layer, support for mod-

eling and result analysis is only briefly outlined in the

following. In Figure 1 these three steps are outlined

from a user interaction point of view.

Modeling in JAMES II
JAMES II supports various modeling formalisms for

computational biology, e.g. specific extensions of the

DEVS formalism, stochastic and spatial variants of the

pi-calculus [14], reaction networks and reaction-

diffusion networks. Models can be expressed in

different languages, e.g. reaction networks can be

formulated in our custom language, as depicted in

Listing 1, or in SBML [19]. Plug-in types for reading

and writing models allow adding support for various

other representations. At this point, JAMES II dis-

tinguishes between symbolic and executable models:

while the user may work with symbolic models (e.g.

a textual representation) that are not yet complete

and potentially ill-defined, such models need to be

transformed into executable models (i.e. Java

objects/‘compiled’ symbolic models) that can be

easily accessed by simulation algorithms and whose

data structures are optimized for simulation. This also

makes it possible to transform the same symbolic

model into different kinds of executable models,
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Figure 1: Most user interaction takes place during modeling (step A) and the interpretation of simulation results
(C). However, the experiments that are to be conducted on a model have to be specified as well (B), which in case
of JAMES II entails the configuration and composition of various sub-components (red box on right). These consti-
tute the so called experimentation layer of JAMES II and may be involved in complex interaction patterns (note the
data feedback loop from the execution infrastructure to the experiment design layer).
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which in turn can be simulated by different simula-

tors: for example, a symbolic model given in SBML

might be transformed into an executable model for

either a stochastic simulation algorithm (SSA) (using

one of the exact or approximate SSA variants avail-

able in JAMES II [7, 20]) or a deterministic simula-

tion by numerical integration. All in all, the

distinction between symbolic and executable

models allows to exchange (symbolic) models easily

and still retains full flexibility when it comes to the

internal implementation of (executable) models.

Furthermore, each symbolic model can be edited

by different kinds of model editors.

Result visualization and analysis in
JAMES II
Analogous to the flexible support for various mod-

eling formalisms and languages, both off- and online

visualization are supported in principle, i.e. users may

plug in customized solutions in case the available

components do not suit their needs. This includes

statistical methods as well as visual approaches for

result analysis. Apart from a pre-packaged compo-

nent for line charts, which allows to view any kind

of numeric variable over time, additional solutions

for computational biology including a point-based

visualization [21], allowing the simultaneous visual-

ization of hierarchical models up to a million data

items, a multiple-view technique for visualizing spa-

tiotemporal data in 3D [22] and the Mosan frame-

work for providing a linked view on model and

data from the different phases [23] are under

development.

EXPERIMENTSWITH JAMES II
Experimentation is a crucial and challenging feature

to implement in modeling and simulation software

like JAMES II. It is at this level where many—partly

interdependent—techniques interact with each other

(compare [25]). Imagine a user who wants to simu-

late the simple model from Listing 1 stochastically,

e.g. to explore different reaction constants r1 and r2.

An experiment for this task should rely on efficient

mathematical methods to guide exploration, efficient

statistical methods to obtain significant results and

efficient algorithms to simulate the model. All these

responsibilities have been assigned to specific plug-in

types, i.e. we followed the common software engi-

neering principle of separating concerns. As illu-

strated in Figure 1, an experiment is realized by a

composition of plug-ins. JAMES II automates the

execution of experiments by prescribing meaningful

interaction patterns between all involved plug-in

types, which eases a user’s responsibility in choosing

a suitable plug-in for each type and in orchestrating

them. This section outlines the core elements of

a JAMES II experiment and the rationale behind

them. A corresponding example is given in

‘Example: experiments with species-reaction net-

works’ section. Further technical details on the

experimentation layer are given in [27].

Experiment design provides guidelines for effi-

ciently conducting meaningful experiments, e.g.

how to test a given hypothesis or how to find out

the most interesting parameter region for a given

model. Such techniques have a long history in math-

ematics and statistics (e.g. [28, 29]), yet results from

these fields are often ignored in practical endeavors,

such as clinical studies [30]. This only seems natural,

since the actual target audiences of such methods are

experts in their specific fields, but not necessarily in

experiment design as such. Many design techniques

are applicable in general and are relevant across var-

ious fields of research, so JAMES II aims at including

them within its experimentation layer. This should

Listing 1: Textual representation of a simple reaction network model. See also Example: experiments with
species-reaction networks section for details.
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empower non-expert users to design more sophisti-

cated experimental setups by themselves, without

having to re-implement these techniques manually.

JAMES II supports different families of techniques, as

described in the following. Thereby, the specifica-

tion of the experiment is crucial. We distinguish

model and simulation execution parameters. Model

parameters define the initial state (including start

parameters, composition, etc.) of the model to be

executed. Simulation parameters define execution-

related aspects as data collection means and simula-

tion run execution techniques. JAMES II provides

additional assistance for both parameter sets. The

parameters and the manual or automated combina-

tions of techniques influence the performance of

experiment execution. Here performance can refer

to run time/memory efficiency or to quality of

results.

Model parameters
Model parameters are parameters used to parameter-

ize/setup a model. The parameter combinations to

be used for one dry-lab experiment can be given

using fixed sets or they can be dynamically com-

puted. The effect of model parameters on efficiency

is obvious, as useless or faulty parameter combina-

tions can add a bias to the result and they consume

unnecessary computation time.

Parameter scanning
A simple parameter scanning experiment, i.e. simu-

lating a fixed set of model parameter setups, is

defined in JAMES II by nested lists of experiment

variables and their modifiers. Each variable corre-

sponds to a model parameter that shall be changed

over the course of the experiment. Its modifier

updates the value of the variable during the experi-

ment, e.g. step-wise or following a pre-defined list of

values. To allow for all kinds of parameter combina-

tions, an experiment variable can be either added to

an already existing list or to a new sub-list, as shown

in Figure 2.

Optimization, validation, sensitivity analysis and
meta modeling
Another relatively common task for simulation soft-

ware is optimization, i.e. to find a parameter setup

that maximizes an objective function defined on

model outputs and parameters. The more parameters

a (biological) model has, the larger the search space

for optimization techniques.

Several common meta-heuristics [32] have been

implemented for optimization in JAMES II, e.g.

simulated annealing, genetic algorithms and tabu

search. They are broadly applicable since they treat

simulation models as black boxes. More powerful

methods can be integrated by wrapping them in a

JAMES II plug-in.

Figure 3 shows how optimization algorithms are

combined with experiment variables to define an

optimization experiment. Note that sub-lists are

not allowed, as this would mean to let the optimizer

examine a single setup that actually represents mul-

tiple ones. Additionally, a user needs to define an

experiment variable that holds a list of all optimiza-

tion algorithms to be executed. These will be inde-

pendently applied to the problem, one after another.

This, for example, allows to define multiple optimi-

zation strategies for parameter fitting, and compares

Figure 3: Inclusion of optimization algorithms in
JAMES II. Sub-lists are not allowed here, but the above
lists can hold arbitrary variables. The definition of an
optimization problem requires additional data struc-
tures, e.g. an objective function and constraints on the
parameter space. Algorithm parameters have to be set
as well, e.g. the initial temperature of a simulated
annealing optimization. The current optimization algo-
rithm acts as a modifier for the variables that represent
the search space, in contrast to the parameter scan
schema shown in Figure 2.

Figure 2: Case (A) shows two nested experiment
variables for the reaction constants r1 and r2 of the
sample model (see Listing 1). Each is set to 10 different
values, resulting in a full factorial experiment consisting
of 100 parameter combinations (r1, r2): (1, 5), . . . , (1, 15),
(2, 5), . . . , (10, 15). Placing both variables on the same
level, as in case (B), yields ten combinations: (1, 5),
(2, 6), . . . , (10, 15). The number of variables per list and
the nesting depth can be chosen arbitrarily. Variable
names have to be unique.
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their performance for the task at hand. By defining

additional layers on top (compare Figure 3), such

jobs can be performed on a whole range of different

setups.

One of the most crucial aspects for successful

experimentation is model validation. Elaborate clas-

sifications of validation methodology exist (e.g. [33]),

but supporting experimental model validation in

practice is still very challenging [34]. Validation

makes use of several other experiment design tech-

niques, e.g. sensitivity analysis (SA): if parameter

interactions and impact in the real system are

known such analyses can invalidate all models

which fail to comply. Similar to optimization algo-

rithms, validation methods often rely on external

data sources, e.g. results from the wet lab.

A user should always do a model parameter SA at

first. SA can be used to identify the important and

the valid domains of parameters. Thus, SA allows

restricting the search space to a few key parameters

and value ranges. JAMES II currently supports SA

with full factorial designs, fractional factorials [31]

and Plackett-Burman designs [28].

Another domain of experiment design is con-

cerned with the efficient generation of so-called

meta-models. A meta-model approximates the

behavior of a simulation model. It is usually defined

mathematically, e.g. as a polynomial function of the

model parameters, for which some coefficients are

unknown and have to be fitted to the behavior of

the original model. Typical meta-models are rela-

tively easy to compute, so that they can save large

amounts of computing time, e.g. when used by opti-

mization algorithms. Moreover, they can be used to

steer experiments into those regions of the parameter

space that will yield more (statistical) information

[35]. JAMES II already supports deterministic

kriging (compare [35, 36]). We regard meta-

modeling as an interesting future direction, as it

allows reducing the number of simulation runs

needed significantly. Technically, meta-modeling

is implemented similarly to optimization and sensi-

tivity analysis.

Simulation parameters
While the model parameter set creation techniques

discussed above define what experiments to execute

with the model, they do not prescribe how, how

long and how many times runs shall be executed.

Simulation parameters have a direct impact on per-

formance. Depending on the simulation algorithm

execution paradigm, i.e. sequential or parallel, due

to different simulation algorithms [20] and combina-

tions with other algorithms, the time needed to exe-

cute a simulation run can vary significantly. The

accuracy, e.g. due to different numerical integration

algorithms or exact or approximate Gillespie variants

can be traded for efficiency as well. Last but not least

statistical efficiency, which aims at obtaining a result

of maximal statistical significance with minimal

consumption of computational resources, has a sig-

nificant impact. With increasing popularity of

stochastic simulation approaches in computational

biology, the latter mechanisms become more and

more important.

Stopping rules
Apart from stopping at a pre-defined point in simu-

lation time, JAMES II supports dynamic stopping

rules, e.g. for configuring any simulator to stop

after a certain number of simulation events, a certain

amount of wall-clock time, or after an observed vari-

able reached equilibrium or a given threshold.

Additional plug-ins allow to concatenate arbitrary

stopping rules using AND and OR operators.

There is a large body of statistical work on stopping

rules, which are of particular importance for

steady-state simulations, e.g. [37]. This knowledge

should be leveraged for experiments on biological

models as well, since a suitable stopping rule avoids

unnecessary computation and may therefore reduce

execution time considerably.

Replications
Outcomes from simulation runs that contain stochas-

tic elements have to be regarded as random variables.

These variables need to be sampled repeatedly in

order to gain significant results, which again require

statistical methods. In JAMES II, replication is con-

trolled by a list of replication criteria. They deter-

mine how many times each parameter setup of an

experiment has to be replicated. The replication of a

parameter setup is not stopped until all criteria are

satisfied. A typical application of replication criteria is

to ensure certain confidence intervals for some sim-

ulation output.

As too many replications waste computation time

and too few replications yield unreliable results,

JAMES II allows using replication criteria to end

up with the minimal number of required runs.

Furthermore, a proper handling of random num-

bers is essential for any tool that offers stochastic

simulation. The (pseudo)-random numbers are
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generated by specialized random number generators

(RNGs) and have to be as uncorrelated, i.e. random, as

possible. If this aspect is neglected, which is often the

case in experimental simulation studies [5], this can

lead to strongly biased and invalid observations [38–

40]. The initial state of an RNG, also called its seed,

predetermines its output and has to be defined

within the experiment. Otherwise, the results

obtained lack reproducibility. Since it is extremely

hard to determine the best RNG for a given problem

a priori, stochastic experiments that strongly rely on

random numbers should be executed with different

kinds of RNGs which produce unequally correlated

output [39]—if results still match, chances are good

that the obtained data is valid.

JAMES II provides a framework to integrate

existing RNGs, along with custom implementations

of the most popular algorithms and various estab-

lished statistical tests to check the randomness of

new RNG plug-ins [41]. Since most RNGs only

generate numbers that are uniformly distributed in

[0, 1), JAMES II offers over 20 commonplace prob-

ability distributions that transform the output of

RNGs appropriately.

Recording simulation results
After deciding which parameter setups are evaluated

(Model Parameters Section) in what manner

(Stopping Rules and Replications Sections), a

JAMES II user has to select which results of a simu-

lation run need to be recorded, i.e. the data that shall

be observed from each run. This is an important part

of the experimentation process, as selecting insuffi-

cient data will hamper later result analysis. For exam-

ple, infrequent snapshots of the model state may miss

potentially interesting phenomena that occurred

in-between. On the other hand, even relatively

simple experiments with chemical reaction networks

may generate overwhelming amounts of observa-

tions, as discussed in [20]. In JAMES II, simulation

trajectories are recorded using a plug-in type which

hides the actual storage technology. This allows to

alternatively use data base-, file system- or

memory-based storage approaches.

Instrumentation
Instrumenters in JAMES II are responsible for select-

ing the properties of simulation algorithms and

models that shall be recorded. This procedure is

straightforward in most cases, but can be challenging

when only specific parts of a large model are of inter-

est. The trade-off between experiment duration and

storage space on one side, and the amount of

required measurements on the other, ultimately

depends on the objectives of the experiment. This

is decided by the JAMES II user, who configures the

chosen instrumenter accordingly. The instrumenter

and its configuration are also part of the experiment

definition, since the reproducibility of the obtained

measurements cannot be guaranteed otherwise. It is

invoked once, after model and simulation run instan-

tiation. Models with dynamic structures, such as

some of our DEVS extensions [10, 42], pose future

challenges for instrumentation in JAMES II, because

new model entities might be added at runtime and

thus need to be instrumented on the fly.

Observation
JAMES II relies on the well-known observer pattern

[43] to take measurements during simulation. An

observer is registered by an instrumenter at one or

more entities that may belong to model or simula-

tion algorithm. It gets notified when the state of the

observed entity has changed. Different interfaces

mark observers that require a data storage to write

to or that may feed an online visualization. So far,

observation code for JAMES II has to be pro-

grammed manually, but it can often be reused

across similar experiments, e.g. when they rely on

the same modeling formalism.

Being able to integrate custom observation code is

important because a naive solution might be compu-

tationally expensive and would then slow down the

overall experiment. Figure 4 illustrates the potential

impact of observation on simulation performance.

Simulation Run Execution
Finally, a JAMES II user has to specify the way in

which the model setups are to be simulated, i.e. with

which algorithm and on which resources. Defining

the algorithms to be employed is crucial for repro-

ducibility and comparability of simulation results.

Simulators are non-monolithic entities in JAMES

II, as they often rely on other plug-ins, such as

event queues or numerical integrators. All plug-ins

can be exchanged by alternative implementations of

the same plug-in type. This leads to a combinatorial

explosion that allows JAMES II to offer thousands of

distinct simulation algorithm setups in some cases.

Algorithmselection Due to the flexibility of JAMES II

users can be overwhelmed by the large amount of

options, and it is often unclear which setup will per-

form best for a given model. Assisting the user in
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making this decision relates to the so-called algo-

rithm selection problem [45]. In JAMES II, it has

been tackled in different ways, e.g. by using machine

learning for an automated selection before execution

[46] or by using sequential experiment designs to

identify the most suitable setup for replication at

runtime [47]. The latter can save up to 60% execu-

tion time in experiments with our SSAs and

stochastic-pi simulators.

Distributed execution schemes Further reduction of

execution time can be achieved by distributing the

load over multiple resources. Such parallelization

makes sense on several levels: experiment design,

replications or even for speeding up a single run.

JAMES II provides parallelization mechanisms for

each of them. On the level of experiment design,

it allows to create an arbitrary number of parameter

setups at once, so that these can be simulated in

parallel. This suffices for many sensitivity analysis

techniques (see Model Parameters section), which

generate all parameter setups at the beginning and

require simulation results only for identifying param-

eter interactions at the end. The situation is different

for optimization and meta-modeling. Here, feedback

in form of observed simulation data is required to

steer experimentation itself, so the generation of

parameter setups needs to be throttled. Techniques

for parallel optimization may be employed to allevi-

ate this effect.

On the level of replications, each criterion returns

the minimum number of additional replications

it requires, rather than a yes/no answer (see

Replications Section). This enables parallelization

for a single parameter setup, since all replications

that are already known to be required can be exe-

cuted in parallel.

These two levels of parallelization are managed by

the simulation runner plug-in type [48], which may

use local resources or connect to a master server for

job scheduling. The master server manages simula-

tion servers, which act as workers and execute the

simulation runs distributed to them. The master

server also manages additional services that may be

necessary for distributed execution, e.g. databases to

store simulation results.

Finally, very large or very complex models may

require a fine-grained parallel and distributed simula-

tion, i.e. parallelization on the level of a single run that

is distributed over multiple resources [49]. While this

powerful technique is very promising in the advent of

multi-core CPUs in standard desktops, it also poses

some considerable implementation challenges.

Two major problems are the partitioning of the

model and the synchronization between the resources.

The partitioning has to be chosen in such a way that

neither computational load nor communication costs

hamper performance dramatically. Finding a good bal-

ance between computation on the resources and com-

munication between them is crucial for the

performance of fine-grained simulations. In order to

realize fine-grained synchronization schemes, special-

ized (conservative or optimistic) simulation engines are

required. If such simulators are available for a modeling

formalism, as it is the case for some DEVS and

pi-calculus variants in JAMES II, the experiment can

be configured with a resource allocator, a component

that selects the desired number of servers for executing

a single run. Several formalism-independent partition-

ing schemes can be used to assign model entities to

available resources. The list of eligible resources is pro-

vided by the master server. Both master and simula-

tion servers can be started and administered via the

user interface. Figure 5 summarizes the possibilities

for parallel and distributed simulation in JAMES II.

Experiment Storage and Retrieval
All the above parameters constitute the specification

of the dry-lab experiment. A custom XML-based file

format is used for storing and retrieving experimental

setups. Reading and writing of experiment

Figure 4: Performance impact of observation, mea-
sured on experiments with three replicated runs for
the linear chain system (an SSA benchmark from [44]).
Measurements are averaged over three experiment
replications. Clearly, extensive data observation slows
down experiment execution dramatically and should
therefore be avoided.
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descriptions is based on plug-ins and can therefore be

extended easily.

EXAMPLE
A small example shall briefly demonstrate how a

user can set up a simple experiment by combining

some of the JAMES II components introduced in

the previous sections. The task for the user

should be to create an experiment that estimates the

kinetic reaction constants for two reactions. Our toy

model (compare Listing 1) represents a very small reac-

tion network with only one species and two reactions;

one reaction increases the number of particles for the

species, while the other decreases it. Obviously, the

system will converge toward a steady state.

The reaction constants r1 and r2 shall now be

estimated, based on a known amount of species A

in the steady state. Listing 2 shows the corresponding

experiment definition. Here, the user chooses to per-

form a stochastic simulation of the model with a

specific SSA, (lines 43�45). The core of the exper-

iment, i.e. finding the values for the missing param-

eters, is defined in lines 9–16. A single simulation

consists of 10 independent replications (line 25)

that are executed in parallel (line 47) and utilizes

the Mersenne Twister for generating random num-

bers (lines 26�28). Snapshots of the model state are

taken at three different time points and are stored in

a Ele (lines 31�39).

RELATEDWORK
Not only is the number of M&S methods being

increased steadily, but also the number of M&S

software packages for computational biology. Thus,

the following discussion of related work remains

necessarily incomplete. JAMES II is of course not

the only M&S software that supports the experimen-

tation techniques discussed above.

In systems biology, many tools support different

simulation algorithms, e.g. Copasi [51], E-Cell [52]

and Dizzy [53]. Those tools typically focus on one

family of formalisms though, e.g. reaction networks

(Copasi and Dizzy). Copasi (V 4.5 (Build 30)) pro-

vides support for a number of additional techniques

(e.g. optimization, parameter scans, etc.), but to our

understanding they cannot be combined easily.

The Bio-PEPA Workbench [54] offers many

options when it comes to simulating and analyzing

a model defined in Bio-PEPA. It does this by using

other tools such as Dizzy for simulation or PRISM

for probabilistic model checking. Dizzy itself offers a

variety of simulation algorithms, but it does not seem

to support more complex experiment setups. The

need to accommodate other formalisms is addressed

in Bio-PEPA by exchange formats, which allow

models defined in other formalisms to be translated

into Bio-PEPA (as long as they do not have a dif-

ferent expressiveness). In the CoSBi Lab [55], a col-

lection of tools for visualization, analysis and

simulation is built around the language BlenX.

Both the Bio-PEPA Workbench and the CoSBi

Lab adopt the idea of the Systems Biology

Workbench [56], i.e. supporting the integration of

different tools. Cell Illustrator 4.0 [57] provides a

variety of different model descriptions, which are

then mapped to a single internal model representa-

tion. It supports graphical model editing and runtime

visualization via the main model editor. In contrast

to JAMES II, the experiment setup is restricted

to parameter scans, external servers and thus

coarse-grained parallel simulations can only be con-

figured manually, per simulation run. Many other

products from simulation research address specific

sub-topics that have been raised, e.g. random num-

bers [58] or instrumentation [26].

Finally, we observe a trend toward further auto-

mation for wet-lab experiments [59] and dry-lab

experiments [60] alike. All this documents the need

for flexible tools that support different approaches to

model, simulate and analyze. However, the refer-

enced approaches differ from JAMES II as their sup-

port of alternatives, i.e. their flexibility, typically ends

at the level of simulation algorithms or entire tools.

This is unsatisfying with respect to the quality of

Figure 5: Different abstraction levels for paralleliza-
tion with JAMES II. Note that setups and their replica-
tions can be executed independently of each other,
while the parallelization of a single run implies the
communication of intermediate results (e.g. via time-
stamped messages) among the participating entities
(blue arrows) and hence requires synchronization.
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results and performance, as details like data structures

and sub-algorithms can have a significant impact

[20]. Configuring single simulation runs in detail

(algorithms, sub-algorithms, model data structures,

etc.) is a unique feature of JAMES II. The thorough

application of JAMES II’s plug’n simulate concept

also provides the basis to configure and steer exper-

iments automatically, e.g. with the help of a perfor-

mance data base or machine learning methods.

CONCLUSION
Many advantages of using JAMES II for computa-

tional biology research have already been discussed

[7], albeit from a more technical and less

experiment-centric and comprehensive viewpoint.

Here we have illustrated the usage of JAMES II as a

general tool for high performance dry-lab experimen-

tation. We have discussed several important issues any

experimenter has to take care of: general experiment

design, statistical efficiency, measurement data pro-

cessing and execution specifics. The fundamental

requirements of reproducibility, software component

soundness and efficient execution pervade all of the

above aspects. They are not just orthogonal, but also

determined by their weakest link: one under-defined

mechanism and an experiment may not be reproduc-

ible; one malfunctioning algorithm and its outcomes

may be invalid; one slow implementation and the

computation may take ages.

While the diversity of techniques makes dry-lab

experimentation a daunting challenge, it also hints at

Listing 2: Example experiment definition for parameter estimation.
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the huge potential in combining different methods,

e.g. to reduce the number of required parameter

setups, the number of replications per parameter

setup, the execution time per replication and so

on. These synergies can be leveraged by using a

common platform, which allows to automate the

overall process and to integrate research efforts

from all relevant areas. We hope that JAMES II pro-

vides a solid base for such developments. Another

important direction of future work aims at facilitat-

ing the definition of JAMES II experiments, e.g. by

developing comprehensive experiment editors,

which should make it easier for non-computer sci-

entists to exploit the flexibility and to come up with

performant and valuable experiments. A version of

JAMES II is available at http://jamesii.org.

Key Points

� We illustrate the usage of the modeling and simulation frame-
work JAMES II as a tool for dry-lab experimentation in systems
biology.

� Important issues in dry-lab experimentation are general experi-
mentdesign, statistical efficiency, data processing, and execution
specifics. Thereby, fundamental requirements to be addressed
are reproducibility, software component soundness, and effi-
cient execution.

� The diversityofmethods for efficientdry-lab experimentation in
systems biology is challenging, but also provides huge potential,
e.g. when combining those to reduce the number of required
parameter setups, the number of replications per parameter
setup, and the execution time per replication.

� This potential can be exploited effectively by a plug-in-based
modeling and simulation framework like James II, which allows
to integrate research efforts fromdiverse areas and to automate
parts of the experimentation process.
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Variable Ports and Multi-Couplings for Cell Biological
Modeling in DEVS. In: Proceedings of the 2006 Winter
Simulation Conference 2006.

43. Gamma E, Helm R, Johnson R, et al. Design Patterns,
Addison-Wesley, 1995.

44. Cao Y, Li H, Petzold L. Efficient formulation of the sto-
chastic simulation algorithm for chemically reacting systems.
J Chem Phys 2004;121:4059–67.

45. Rice JR. The algorithm selection problem. AdvComp 1976;
15:65–118.

46. Ewald R, Uhrmacher A, Saha K. Data mining for simula-
tion algorithm selection. In: Proceedings of the SIMUTools’09:
2nd International Conference on SimulationTools and Techniques
2009.

47. Ewald R, Leye S, Uhrmacher AM. An efficient and adap-
tive mechanism for parallel simulation replication. In:
Proceedings of the 23rd Workshop on Principles of Advanced and
Distributed Simulation (PADS ’09), IEEE CPS, 2009;104–13.

48. Leye S, Himmelspach J, Jeschke M, et al. A grid-inspired
mechanism for coarse-grained experiment execution. In:
Proceedings of the 12th International Symposium on Distributed
Simulation and Real-TimeApplications, IEEE Press, 2008;7–16.

49. Fujimoto RM. Parallel and Distributed Simulation Systems.
Wiley, 2000.

50. Matsumoto M, Nishimura T. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random
number generator. ACMTrans Model Comput Simul 1998;8:
3–30.

51. Copasi. http://www.copasi.org/ (October 2009, date last
accessed).

52. E-Cell. http://www.e-cell.org/ (October 2009, date last
accessed).

53. Dizzy. http://magnet.systemsbiology.net/software/Dizzy/
(October 2009, date last accessed).

54. Bio-PEPA Workbench. http://www.dcs.ed.ac.uk/home/
stg/software/biopepa/bpwb.html (October 2009, date last
accessed).

55. CoSBi. Lab: http://www.cosbi.eu/ (October 2009, date last
accessed).

56. Systems Biology Workbench. http://www.sys-bio.org/.
(October 2009, date last accessed).

57. Cell Illustrator. http://www.cellillustrator.com. (October
2009, date last accessed).

58. L’Ecuyer P, Meliani L, Vaucher J. SSJ: A framework for
stochastic simulation in Java. In: Proceedings of the 2002Winter
Simulation Conference 2002.

59. King RD, Rowland J, Oliver SG, et al. The automation of
science. Science 2009;324:85–9.

60. Perrone LF, Cicconetti C, Stea G, et al. On the automation
of computer network simulators. In: Simutools ’09:
Proceedings of the 2nd International Conference on SimulationTools
andTechniques. Rome, Italy: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering), 2009;1–10.

300 Ewald et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/3/290/225819 by guest on 20 M
arch 2024


