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Abstract
Next-generation sequencing technologies have opened up an unprecedented opportunity for microbiology by

enabling the culture-independent genetic study of complex microbial communities, which were so far largely un-

known. The analysis of metagenomic data is challenging: potentially, one is faced with a sample containing a mixture

of many different bacterial species, whose genome has not necessarily been sequenced beforehand. In the simpler

case of the analysis of 16S ribosomal RNA metagenomic data, for which databases of reference sequences are

known, we survey the computational challenges to be solved in order to be able to characterize and quantify a

sample. In particular, we examine two aspects: how the necessary adoption of new tools geared towards

high-throughput analysis impacts the quality of the results, and how good is the performance of various established

methods to assign sequence reads to microbial species, with and without taking taxonomic information into

account.
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INTRODUCTION
To solve the core problem of metagenomics is to

determine and quantify the species composition of

a sample containing material from a mixture of dif-

ferent (and possibly previously unknown) micro-

organisms [1]. Direct sequencing techniques are

fundamental to this end, since they give access to

microbial species that otherwise could not be isolated

and grown in the laboratory.

Although some pioneering studies in metage-

nomics date back to several years ago [2], the

recent advent of high-throughput sequencing

(HTS) has paved the way to a variety of projects

trying to capture the diversity of microbial ecosys-

tems [3, 4, 5, 6, 7]. In particular, cheap sequencing

coupled to large-scale analysis techniques promises to

play a major role in the exploration and understand-

ing of multi-organism interactions relevant to human

health, which remain so far mostly unknown [8]. It is

not hard to envision for the close future scenarios

where the bacterial composition of an individual’s

gastrointestinal tract is constantly monitored in clin-

ical trials, or environmental samples from public

places are periodically checked for the emergence

of new pathogens. Applications to functional meta-

genomics, in particular finding genes encoding for

novel biocatalysts and drugs [9] in environmental

samples from aquatic, soil, animal and plant habitats,

also promise to have an enormous impact on bio-

technology [10].

However, metagenomics stands out by itself as a

daunting challenge: in addition to the usual
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difficulties inherited from genome sequencing (in

particular those coming from the short read length

accessible to present-day machines), many other

problems need to be solved if a precise characteriza-

tion of a metagenomic sample is desired.

To keep things simple and due to lack of space, in

this article we will remove from the picture an im-

portant source of uncertainty: we will assume that (a

good approximation of) the genomic reference for

the biological sample has already been established,

thus essentially reducing the metagenomic problem

to the precise quantitative determination of the com-

position of a mixture of species already known in

advance. In particular, we will not examine the com-

plications that arise when an unknown number of

unknown genomic components need to be

assembled out of HTS data.

In general, the sources of uncertainty contributing

to the problem of metagenomics in an HTS setup

can be modeled after the successive stages needed to

analyze a typical dataset.

(i) Two metagenomic samples can present a very

high variability, showing wildly varying com-

plexities (number of species present in the

mixture) and distributions of relative abun-

dances (one or more dominant species);

furthermore, many extreme possibilities are all

represented by corresponding realistic biological

situations.

(ii) The sequencing technology employed influ-

ences the species accessibility and resolution

that can be achieved in a study (different read

lengths and yield lead to different discriminative

power in the detection of both the number of

species and their relative abundances).

(iii) The way we understand and model taxonomies

(multiple alignments, trees, etc.) constrains the

extent up to which we are able to distinguish

samples of genomes coming from more or less

related species.

(iv) The way we assign HTS reads to the taxo-

nomies (by using different alignment algorithms,

k-mer analysis, Bayesian models and so on) de-

fines complex trade-offs between the sensitivity

of the method, the amount of data produced,

and the effectiveness of the assignment. In par-

ticular, due to the high yield offered by modern

sequencing technologies, some methods estab-

lished in the field no longer offer adequate

performance.

In the rest of this article, we will try to survey how,

in our understanding, the aforementioned sources of

uncertainty contribute to make the chosen metage-

nomic setup a difficult problem. In particular, we

will consider each stage separately, examining vari-

ous alternative computational methods, and critic-

ally assessing the respective performance and

limitations.

SIMULATINGAMETAGENOMIC
SAMPLE
The signal obtained when sequencing metagenomic

data can be extremely complex. Due to this reason,

the availability of standardized simulated data as a

starting point is fundamental, especially when

trying to evaluate the influence of different analysis

pipelines on the quality of the results.

Sequence reads should be simulated in a way that

reflects the diverse taxonomic composition of a

metagenomic dataset. The scientific community has

been aware of this problem since several years. One

of the first in-silico metagenomic datasets [11] was

designed with the goal of simulating microbial com-

munities of varying complexity: low-complexity

communities with one dominant population,

medium-complexity communities with more than

one dominant population flanked by low-abundance

populations and high-complexity communities with

no dominant population.

Subsequently a more general tool, MetaSim [12],

was developed. It allows not only to choose a meta-

genomic scenario, but also to take the sequencing

biases introduced by different technologies into ac-

count: due to such capabilities, it appears to be an

adequate tool for the scope of this study. In particu-

lar, in order to simulate a metagenomic dataset with

MetaSim, the number of genomes present at each

level of the NCBI taxonomy [13], the sequencer

error model and the read length distribution have

to be specified.

General considerations
As previously mentioned, it is possible to envisage

many different experimental biological setups (tar-

geted or random sequencing, one or many dominant

species) giving rise to different categories of metage-

nomic datasets, each one showing a different degree

of redundancy. To keep things simple, we will focus

in this article on the problem of distinguishing and

quantifying the relative abundance of sequences all
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coming from the ribosomal 16S subunit of bacterial

species [1]. Although this is a classical problem in

metagenomics, we will examine it in the new con-

text of HTS techniques, which impose new analysis

protocols.

Due to historical reasons in the development of

HTS techniques, most of the metagenomic 16S

ribosomal databases available today have been gen-

erated using Roche/454 technology [14]. For several

years, this platform has been capable of providing

long reads (200–500 nt, with the perspective of

becoming 1000 nt in the near future) at the price

of many insertions/deletions, particularly when

long homopolymeric stretches are present in the nu-

cleic acid being sequenced. This has motivated the

development of sequencing error correction meth-

ods for Roche/454 data [15, 16]. The yield is

moderate.

In recent years, however, other technologies have

been introduced. Among them, the sequencing-

by-synthesis by Illumina/Solexa, which produces

shorter reads (36 nt as of 2008, 150 nt as of today)

but offers a very high fidelity (notably, a very low

rate of insertions/deletions) and much higher yields.

In general, longer reads are more effective in high-

lighting differences between closely related se-

quences; however, the read length provided

today by Illumina/Solexa sequencing is enough to

achieve a good resolution, with the additional

advantage of a much lower cost. These consider-

ations suggest that technologies like this one will

become more and more relevant to metagenomics

in the near future.

Such considerations explain why we decided to

simulate both Roche/454 and Illumina/Solexa

reads for this survey.

Generating Roche/454 and Illumina/
Solexa datasets with MetaSim
We took a reference bacterial taxonomy of 5165

near-full-length cultures of high quality obtained

from the TOBA database [17, 18, 19] with a uniform

scheme of seven taxonomic ranks (domain, phylum,

class, order, family, genus, species) [18]. These 16S

ribosomal RNA sequences range from 1202 to

1780 nt and cover the whole spectrum of known

bacteria, the dominant phyla being Proteobacteria,

Actinobacteria, Firmicutes, Bacteroidetes and

Tenericutes, with 1925, 1285, 1178, 355 and 160

species, respectively. Despite their high quality,

2169 of the 5165 reference sequences have ambigu-

ous base calls.

We then sampled metagenomic reads from the

reference sequences with MetaSim, using empirical

error models for both Roche/454 (pyrosequencing)

and Illumina/Solexa (sequencing-by-synthesis)

technologies. Our four datasets contain Roche/454

reads of variable length and 100 and 250 nt on

average, and Illumina/Solexa reads of 50 and 75 nt,

with �100 000 reads for each error model and

length.

The size of our controlled experiment is very small

if compared to the typical yield provided by a

modern HTS machine, and thus admittedly unreal-

istic—for instance, one single lane of Illumina/

Solexa technology currently contains �20 million

reads. However, datasets of the size considered in

this article still allow for precise statistical conclusions

to be drawn; they also make possible accurate com-

parisons at the single-read level, which would other-

wise be very difficult due to the excessive amount of

data.

It should be noted that after running MetaSim it

was necessary to filter its results due to the presence

of various simulation errors, which were producing

results not completely consistent with what one

would expect from existing technologies. In particu-

lar, we have filtered out sampled Roche/454 reads

which were too short (that is, for the two datasets of

100 and 250 nt, reads having length at most 20 and

50 nt, respectively); as well, we have excluded simu-

lated Illumina/Solexa reads not corresponding to a

full-length match at the given position in the refer-

ence sequence. We also mention that our Illumina/

Solexa datasets of length 50 and 75 have been ob-

tained by truncation from datasets of 62 and 80 nt,

respectively. In fact, the latter ones were the hard-

coded read lengths provided by MetaSim, but they

do not correspond to the most typical values seen

when using Illumina/Solexa instruments. The result-

ing total number of reads and the average read

lengths for each empirical error model are shown

in Table 1.

In addition, we should mention that at the

moment MetaSim does not offer the possibility of

simulating paired-end reads, which is why we had to

limit our study to single-end reads. In a similar

way, the absence of simulated quality scores kept

us from studying the influence of sequencing

qualities on the accuracy of analysis protocols for

metagenomic data.
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Evaluation methods
Several indicators have been proposed and used in

the literature to quantify variability across metage-

nomic samples.

Together with the number of species in a sample

[20], one of the simplest and most widely used meas-

ures of species diversity in microbial ecology is the

Shannon–Wiener index [21, 22], which measures

the information entropy of the distribution of a

sample taken from a population of species. Along

with the Clarke–Warwick index [23], which meas-

ures the average distance in a taxonomic reference

between the sampled species, other widely accepted

notions are those of a-diversity (species diversity

within an ecosystem) and b-diversity (change in spe-

cies diversity between two ecosystems) [20].

In our controlled experiment, given each simu-

lated read we know exactly which is the sequence

in the reference originating it: owing to this fact, for

our artificial datasets we can directly compute the

correct values of any indicator. The exact values of

diversity (Shannon–Wiener index), richness (total

number of species) and taxonomic diversity

(Clarke–Warwick index) for each empirical error

model and read length are also shown in Table 1.

Ideally, the various read mapping and assignment

methods discussed below should reproduce precisely

such values: this requirement will be the core of our

evaluation strategy.

MAPPING SEQUENCE READS
As explained in the previous section, our study will

be focused on the analysis of an HTS sample of

mixed ribosomal RNA 16S subunits of bacterial spe-

cies. In such a situation, the first computational chal-

lenge arises when trying to align (map, in HTS

parlance) a very large number of sequence reads to

the metagenomic reference—which is, in this case, a

database of 16S ribosomal RNA sequences coming

from a large set of different organisms.

The high yield of HTS technologies produces im-

pressive amounts of data. It is nowadays common to

obtain several hundred million of reads during a

single experiment: those figures require extremely

efficient alignment programs. In fact, typical HTS

mappers are able to align tens of million of reads

per hour on a single-core processor. As a matter of

fact, such a high-performance requirement rules out

traditional alignment programs like BLAST [24],

which are slower by about three orders of

magnitude.

Speed, however, comes at the price of accuracy.

While programs like BLAST are easily able to high-

light big differences between the HTS read and the

genome it is being aligned to, typical mappers usually

explore a much more limited number of possibilities.

For instance, by default BWA [25] would allow only

up to six mismatches for a read of 150 nt, corres-

ponding to 96% of sequence similarity. Another

problem is even more relevant. Since most HTS

analysis protocols discard ambiguous reads potentially

coming from more than one single location in the

genome, HTS mappers are usually geared towards

reporting one single ‘best’ match, and not towards

performing exhaustive alignment. In other words,

either due to their algorithmic limitations they are

unable to report all of the—possibly many—matches

found in a reference, or they have as a default be-

havior that of reporting one match, becoming much

slower if asked to find them all.

In general, it is an open question—which is nei-

ther clearly stated nor clearly answered in the litera-

ture—whether modern mappers are adequate to

address metagenomic problems, in particular when

the reference is composed by many sequences very

close to each other. In the latter case, exhaustive

mapping would seem to become paramount, since

given only one match it is impossible to say whether

the read has many hits in the database (making its

attribution in terms of a taxonomic tree ambiguous)

or it actually corresponds to a single species.

Table 1: Features of the simulated datasets

Simulation run Total reads Mean length Diversity Richness Taxonomic diversity

454–100 99 784 107 .021 8.5200 5148 11.0149

454–250 99 387 264.767 8.5190 5148 11.0146

Solexa-50 95 874 50.000 8.5191 5148 11.0168

Solexa-75 94 567 75.000 8.5186 5148 11.0172
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In this section, we try to assess and quantify this

problem. In particular, we compare the results ob-

tained when analyzing our simulated Roche/454

and Illumina/Solexa datasets with different HTS

mappers.

Mapping Roche/454 reads
For the mapping of simulated Roche/454 reads

(which following MetaSim’s sequencing error

models—as explained in ‘Simulating a

Metagenomic Sample’—contain no mismatch and

up to 22 indels, although over 97% of the reads

have at most 13 indels; see Table 2) we have com-

pared two programs suitable for the alignment of

long reads, BWA/SW [26] and BLAT [27]. BWA/

SW is a tool based on the Burrows–Wheeler trans-

form (BWT) employing a heuristic Smith-

Waterman algorithm specifically adapted to long

HTS reads, while BLAT is a BLAST-like generic

alignment tool. Although BLAT is not able to do

exhaustive mapping, it usually shows both good

sensitivity and a reasonable speed, hence appearing

to be a good standard for our comparison (BLAST is

typically orders of magnitude slower than BLAT, and

we had to rule it out for this study).

Some important differences should be noted. Due

to its algorithmic design, BWA/SW can only report

one hit, thus producing a relatively small output

(�20 MB and �40 MB for the 100 and 250-nt data-

sets, respectively). On the other hand, BLAT finds

thousands of hits per read, most of them being par-

tial—that is, such that not all the bases in the query

have been successfully aligned: as a consequence,

BLAT produces a comparatively much bigger

output (of the order of 10 GB for both datasets)

and is comparatively slower. To be able to perform

a meaningful assessment of the results we have then

filtered the BLAT output, keeping only the hits be-

longing to the best stratum—that is, the ones having

the smallest number of edit operations. The size of

the filtered BLAT output is similar to that of BWA/

SW (Table 3). Apart from these choices, we ran both

tools with their default settings: as both programs—

and BLAT in particular—accept many parameters

that define complicated speed-versus-accuracy

trade-offs, we felt that fine-tuning them was outside

the scope of this article.

Comparing BWA/SWand BLAT
It is interesting to note that on one hand, the

HTS-tuned BWA/SW algorithm is much faster

and less space-consuming than that of BLAT; on

the other hand, the sensitivity shown by BLAT

(both tools taken with their default parameter

values) is always higher for the read lengths con-

sidered (74 versus 39%—almost twice as much—of

correctly recovered hits in the 100-nt dataset,

62 versus 53% in the 250-nt dataset; Table 3).

Table 2: Number of simulated reads classified in

terms of their number k of mismatches (for Illumina/

Solexa reads) and indels (for Roche/454 reads)

k 454^100 454^250 Solexa-50 Solexa-75

0 5255 237 44 287 (41 416) 48 861 (44 752)

1 15 206 946 34 463 (34 109) 32 540 (32 035)

2 22 528 2271 13 170 (14 156) 10 493 (12 059)

3 22 363 4636 3292 (4326) 2254 (3473)

4 16 634 7776 577 (1128) 367 (1149)

5 9737 11 184 77 (363) 44 (481)

6 4834 13 305 8 (124) 8 (217)

7 2073 13 994 (66) (108)

8 813 13 180 (42) (80)

9 252 10 851 (23) (38)

10 67 8129 (24) (26)

11 17 5531 (17) (25)

12 5 3349 (11) (10)

13 1990 (8) (19)

14 1051 (6) (13)

15 518 (6) (6)

16 258 (2) (8)

17 102 (3) (5)

18 42 (3)

19 24 (3) (6)

20 8 (3) (4)

21 4 (2) (1)

22 1 (1)

�23 (32) (52)

In parentheses: numbers obtained classifying the reads when the

IUPAC ambiguities coming from the sequences in the reference and

present in the reads due to a bug in MetaSim (see text) are also taken

into account.

Table 3: Mapping simulated Roche/454 reads with

BWA/SW and BLAT

Dataset Tool Output size All reads

Mapped Unmapped

454–100 BWA/SW 18 M 35 999 (38.57%) 57 329

BLAT 11 G/13 M 69 189 (74.14%) 24 139

454–250 BWA/SW 39 M 54 050 (52.73%) 48 444

BLAT 14 G/4 M 63 094 (61.56%) 39 400

Numbers in parentheses indicate sensitivity: the number of reads for

which the simulated read has been correctly aligned to the originating

sequence in the database.
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Another very important point is that from the output

of BWA/SW it is not possible to estimate the redun-

dancy (number of equivalent matches) of each read,

since only one hit is returned by the aligner. In add-

ition, any further computation in order to precisely

assign the read to some branch of the taxonomic tree

becomes problematic, since equivalent matches are

not listed.

As a final remark, it should be emphasized that in

spite of its better sensitivity, it is unclear to us if

BLAT could really be used in a production environ-

ment: the daunting size of the produced output and

the much longer running times it implies would

probably prevent BLAT from providing a yield ad-

equate for a realistic metagenomic HTS setup.

Mapping Illumina/Solexa reads
For the mapping of simulated Illumina/Solexa reads

(which following MetaSim’s sequencing error

models—as explained in ‘Simulating a

Metagenomic Sample’—contain up to eight mis-

matches and no indel, although over 97% of the

reads have at most four mismatches; see Table 2)

we have compared two programs suitable for the

alignment of short reads, BWA [25] and GEM

[28]. Both are tools based on the BWT. However,

one relevant difference is that insofar as only nucleo-

tide substitutions and no indels are involved, GEM

implements an exhaustive search algorithm: all the

existing matches in the reference up to the specified

number of substitutions are always counted, and the

user can specify how many of them should be

output.

Following BWA’s default policy, we looked for

matches in the reference having at least 96% of se-

quence similarity. Hence we ran both programs with

at most two allowed substitutions in the case of the

50-nt dataset, and at most three substitutions in the

case of the 75-nt dataset. In addition, to make the

results fully comparable and ready for subsequent

taxonomic assignment, we asked both programs to

report all matches found. Such a choice actually cor-

responds to all existing matches within the specified

edit distance in the case of GEM, and to a subset of

the latter in the case of BWA, selected by BWA

following a complicated and difficult-to-describe cri-

terion of ‘equivalent best alignment’ proprietary to

the BWA algorithm itself.

As illustrated in ‘Simulating a Metagenomic

Sample’, our simulated Illumina/Solexa reads have

no indels. In consequence, the subset of reads align-

able with at most two substitutions in the 50-nt

dataset (and that of reads alignable with at most

three substitutions in the 75-nt dataset) can be con-

sidered a gold standard to quantify exhaustiveness:

GEM is bound to find all the existing matches for

each of the reads belonging to it.

Apart from the aforementioned choices for the

number of mismatches, both programs were run

with default parameters. Notably, it was necessary

to filter out some non-existent mappings that

BWA had incorrectly reported close to sequence

boundaries in the genomic reference.

Comparing BWA and GEM
The sensitivities of the two programs appear to be

similar (respectively 93 and 94% for BWA and GEM

in the case of the 50-nt dataset, and 97% for BWA

and 98% for GEM in the case of the 75-nt dataset;

Table 4), GEM performing slightly better than BWA

when considering the complete datasets. As one

would expect, in particular, GEM is able to correctly

recover all the hits if one considers the subsets of

alignable artificial reads with at most two substitu-

tions in the case of the 50-nt dataset, and at most

Table 4: Mapping simulated Illumina/Solexa reads with BWA and GEM

Dataset Tool Output size All reads Alignable reads

Mapped Unmapped Mapped Unmapped

Solexa-50 BWA 231 M 89 421 (93.27%) 6453 89 416 (99.70%) 265

GEM 511 M 89 681 (93.54%) 6193 89 681 (100.00%) 0

Solexa-75 BWA 87 M 92 042 (97.33%) 2525 92 039 (97.33%) 280

GEM 284 M 92 319 (97.62%) 2248 92 319 (100.00%) 0

Numbers in parentheses indicate sensitivity: the fraction of reads for which the simulated read has been correctly aligned to the originating

sequence in the database. Alignable reads are the ones having an edit distance from the original sequence of at most two substitutions in the case of

the 50-nt dataset, and at most three substitutions in the case of the 75-nt dataset.
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three substitutions in the case of the 75-nt dataset

(see the last column of Table 4).

However, the ability of recovering the genomic

location that originates the read is not the only im-

portant one as far as metagenomics is concerned. As

mentioned before, it is also paramount to be able to

correctly estimate and output the exact number of

hits, in order to make the successive attribution of

the read to the correct part of the taxonomy tree as

precise as possible. In Figure 1, we quantitatively

examine this aspect: the contingency tables show

the alignable reads separated in groups after their

different classification in terms of number of matches

found by BWA (y-axis) and GEM (x-axis). The reads

on the diagonal have been attributed the same

number of matches by both aligners; for the

off-diagonal reads in the upper triangle BWA,

being not an exhaustive mapper, incorrectly found

less matches than it should have. In particular, the

figures clearly show how BWA misclassifies a rele-

vant fraction of reads (25% for the 50-nt dataset and

30% for the 75-nt dataset) as uniquely mapping

when they are not (see the first row of each panel).

In addition, reads that map into many locations are

often classified by BWA as having a much lower

number of hits (see for instance the rightmost col-

umns in each panel).

We believe that this result clearly illustrates how

large the systematic bias produced by non-exhaustive

mapping schemes can be when trying to assign a read

to a database of redundant sequences, as in the meta-

genomic example considered in this article.

ASSIGNMENTOF SEQUENCE
READS
After sequence reads have been mapped to a refer-

ence, one has to assign each of them to species (albeit

some integrated methods also exist which do not

require a preliminary alignment to be performed ex-

ternally). This is the second computationally challen-

ging step when analyzing 16S ribosomal RNA data.

The assignment can be done in two possible ways.

(i) Non-taxonomic assignment. Possibly using

knowledge of the genomic reference for the

dataset, but assuming no taxonomic reference

for the metagenomic dataset. When it is

known, the genomic reference serves as a tem-

plate for a multiple alignment of the sequence

Figure 1: Fidelity of BWA and GEM mappers measured on 50-nt reads aligned with at most two mismatches

(A) and 75-nt reads aligned with at most three mismatches (B). The heatmap shows how reads can be classified in

terms of the number of times they can be aligned to the reference with GEM (on the x-axis) and with BWA (on the

y-axis); to keep the figure readable, only the distribution for the first twelve matches is shown (the complete

range of matches found is between 1 and �4500 for the 50-nt dataset and between 1 and �2900 for the 75-nt

dataset).
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reads; the alignment in turn defines pairwise

similarities that can be used to group reads

into clusters of related species. In the absence

of a genomic reference, pairwise similarities

among reads can still be used to group them

into clusters of related species, although the gen-

omic reference allows for a better assessment of

their similarity.

(ii) Taxonomic assignment. Reads are attributed to

species at the closest possible taxonomic rank,

using both mapping information and know-

ledge of the genomic and taxonomic reference

for the metagenomic dataset. Ambiguities may

arise while mapping sequence reads to the gen-

omic reference, when a single read is mapped to

more than one reference sequence. These ambi-

guities are usually solved by assigning ambiguous

reads to either the consensus (lowest common

ancestor) of all matching sequences in the taxo-

nomic reference [29], or to a sequence in the

taxonomic reference that provides optimal sen-

sitivity and specificity [30, 31].

In the rest of this section, we examine the perform-

ance of various methods for non-taxonomic assign-

ment (MOTHUR/non-taxonomic and QIIME) as

well as some methods for taxonomic assignment

(RDP classifier, MOTHUR/taxonomic and

TANGO).

Non-taxonomic assignment
MOTHUR/non-taxonomic
To perform the non-taxonomic assignment of our

simulated metagenomic dataset, making use of a gen-

omic reference of 4938 near-full-length, aligned 16S

ribosomal RNA sequences of high quality obtained

from the SILVA database [32], we used MOTHUR

[33] version 1.14.0. The multiple alignment of the

sequence reads was performed with MOTHUR’s

default parameter values, which correspond to

k-mer searching with 8-mers [34] followed by pair-

wise alignment [35] with a reward of 1 for a match

and penalties of 1 and 2 for a mismatch and a gap,

respectively.

Usually, 16S ribosomal RNA gene sequences are

grouped into operational taxonomic units with a

sequence identity threshold of 97%: this produces

phylotypes that are reasonably close to species

[36, 37, 38]. We thus specified a cutoff value of

0.03 to cluster the sequence reads with MOTHUR.

The multiple alignment was then used to group

the reads into clusters of related species, again using

MOTHUR’s default parameter values. The resulting

values of diversity (Shannon–Wiener index) and

richness (total number of species) for each of the

clustering methods available in MOTHUR (com-

plete linkage or nearest neighbor, single linkage or

furthest neighbor, and UPGMA or average neigh-

bor) are shown in Table 5. Comparison with the

exact values in Table 1 shows that non-taxonomic

assignment of reads results in an overestimation of

both diversity and richness of the metagenomic

dataset.

QIIME
For the non-taxonomic assignment of our simulated

metagenomic dataset, we also used QIIME

(Quantitative Insights into Microbial Ecology) ver-

sion 1.2.0 [39], which does not require any genomic

reference. In particular, we selected the CD-HIT

[40] method of QIIME, where the sequence reads

are grouped into operational taxonomic units at dif-

ferent sequence identity thresholds. The default se-

quence identity threshold of 97% produces

phylotypes that are close to species; in addition to

this, we have also used a threshold of 94%, which

produces phylotypes that are close to genus, and a

threshold of 90%, which produces phylotypes that

are close to family [41]. The sequence reads are pair-

wise aligned unless a statistical analysis of their k-mer

Table 5: Non-taxonomic assignment with MOTHUR

Dataset Complete linkage (Nearest neighbor) Single linkage (Furthest neighbor) UPGMA (Average neighbor)

D R D R D R

454–100 10.9427 56 542 10.9692 58 058 11.5127 99 974

454–250 11.4562 94 487 11.4563 94 494 11.5129 99 996

Solexa-50 11.4718 95 973 11.4719 95 976 11.5129 100 000

Solexa-75 11.1665 70 723 11.1669 70 748 11.3920 88 612

Diversity (D) and richness (R) of the datasets for various clustering methods (nearest, furthest and average neighbor).
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frequencies shows that their sequence identity falls

below the threshold value; in the latter case, the

longest read in a cluster becomes the representative

of the operational taxonomic unit.

The resulting values of diversity (Shannon–

Wiener index) and richness (total number of species)

for a sequence identity threshold of 97% (species),

94% (genus) and 90% (family) are shown in

Table 6. Again, comparison with the exact values

in Table 1 shows that non-taxonomic assignment

of sequence reads results in an overestimation of

both diversity and richness of the metagenomic

dataset.

Taxonomic assignment
RDP classifier
We used the RDP (Ribosomal Database Project)

Classifier version 2.2 [42] for the taxonomic assign-

ment of the simulated datasets, with the genomic

reference of 5165 near-full-length type cultures of

high quality described in ‘Generating Roche/454

and Illumina/Solexa Datasets with MetaSim’ and de-

fault parameter values. The RDP Classifier reported

the top seven hits for each read in the simulated

dataset, ranked by confidence estimate.

We then extracted the best hit (having the lowest

taxonomic rank) for each read, given a fixed

confidence threshold. The resulting values of diver-

sity (Shannon-Wiener index) and richness (total

number of species) for a confidence threshold be-

tween 70 and 100% are shown in Table 7.

Comparison with the exact values in Table 1

shows that taxonomic assignment of sequence reads

results in an underestimation of both diversity and

richness of the metagenomic dataset.

MOTHUR/taxonomic
For the taxonomic assignment of the simulated data-

set we also used MOTHUR version 1.14.0 [33],

with the genomic reference of 4938 near-full-length,

aligned 16S ribosomal RNA sequences of high qual-

ity obtained from the SILVA database [32] and de-

fault parameter values, which correspond to k-mer

searching, where we have chosen 6� k� 10.

MOTHUR reported the top hit for each read in

the simulated dataset.

The resulting values of diversity (Shannon–

Wiener index) and richness (total number of species)

for a confidence threshold between 70 and 100% are

shown in Table 8. Again, comparison with the exact

values in Table 1 shows that taxonomic assignment

of sequence reads results in an underestimation of

both diversity and richness of the metagenomic

dataset.

Table 6: Non-taxonomic assignment with QIIME and CD-HIT

Dataset 97% (species) 94% (genus) 90% (family)

D R D R D R

454–100 11.4396 95 146 11.2416 83 945 10.7552 62 743

454–250 11.4675 96 642 11.2252 81 916 10.6435 56 121

Solexa-50 11.3237 89 893 10.9031 72 527 10.3348 54 088

Solexa-75 11.2916 87 505 10.9590 72 863 10.3600 52 948

Diversity (D) and richness (R) of the datasets for various sequence similarity threshold values.

Table 7: Taxonomic assignment with RDP classifier

Dataset T¼100% T¼ 90% T¼ 80% T¼ 70%

D R D R D R D R

454–100 5.0099 1449 4.4206 1422 3.4922 1373 1.5970 952

454–250 6.2334 1444 6.0476 1426 5.7182 1407 4.1619 1357

Solexa-50 3.9299 1375 3.2198 1302 2.3419 1146 1.2636 534

Solexa-75 5.2719 1446 4.8026 1406 4.0484 1341 2.1618 970

Diversity (D) and richness (R) of the datasets as a function of the confidence threshold (T).

622 Ribeca and Valiente
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/12/6/614/222008 by guest on 13 M
arch 2024



TANGO
Finally, for the taxonomic assignment of the simu-

lated Illumina/Solexa datasets we used TANGO

(Taxonomic Assignment in Metagenomics) version

1.2.0 [30, 31], with default parameter values. As

input, we employed the mappings obtained for our

datasets in ‘Comparing BWA/SW and BLAT’ using

BWA and GEM against the genomic reference of

‘Generating Roche/454 and Illumina/Solexa

Datasets with MetaSim’. Since the assignment pro-

cess is sensitive to noise, we filtered the GEM output

stratum-wise—that is, among all possible matches we

kept only those being within some small edit dis-

tance from the best one. In detail, we considered

three sets of matches: first stratum, the set of matches

having the minimum possible number of mis-

matches; second stratum, the set of matches having

at most one mismatch more than the best match and

first/second stratum, an intermediate set (consisting

of the set of best matches, plus those having one

mismatch more than the best ones, but the latter

being included only if they are not more than

twice as many as the matches belonging to the first

stratum). We did not perform such a filtering for

BWA, since it does not find all the matches, and

because it already provides the set of alignments

that are the best ones after its own algorithmic cri-

terion. TANGO reported the top hit for each read in

the simulated dataset.

The values of diversity (Shannon–Wiener index),

richness (total number of species) and taxonomic di-

versity (Clarke–Warwick index) for the various sets

of matches considered can be found in Table 9. The

best result is obtained using the GEM matches fil-

tered to keep only the first stratum, thus confirming

the importance of exhaustive mapping for taxonom-

ic attribution. These values are closer to the exact

values in Table 1 than the ones obtained with

other taxonomic assignment tools; however, despite

the more accurate taxonomic assignment produced

by TANGO, they still represent an underestimation

of our indicators.

CONCLUSIONS
We have surveyed some of the computational prob-

lems that are involved in the analysis of a metage-

nomic 16S ribosomal RNA dataset, along with the

performance of several methods suitable for coping

with such a situation.

(i) Mapping of HTS reads to the genomic refer-

ence (database of more or less related sequences

coming from a set of different species) for the

metagenomic dataset. The high yield of HTS

technologies requires time and space-efficient

alignment programs, and current programs sac-

rifice accuracy for efficiency, exploring a limited

Table 8: Taxonomic assignment with MOTHUR

Dataset k¼ 6 k¼ 7 k¼ 8 k¼ 9 k¼10

D R D R D R D R D R

454–100 2.8589 635 3.0214 649 3.0566 666 3.0695 653 3.0465 649

454–250 3.3534 653 3.4070 662 3.4428 664 3.4538 678 3.4505 680

Solexa-50 2.4020 626 2.6129 642 2.6448 633 2.6440 637 2.6304 637

Solexa-75 2.7633 634 2.9011 628 2.9195 642 2.9286 643 2.9204 653

Diversity (D) and richness (R) of the datasets as a function of the search method (k-mer with 6� k� 10).

Table 9: Taxonomic assignment with TANGO

Dataset BWA GEM (first stratum) GEM (second stratum) GEM (first/second stratum)

D R TD D R TD D R TD D R TD

Solexa-50 6.2114 3,595 8.0441 6.5149 3,739 8.3293 6.0989 3,570 7.6383 6.5189 3,879 8.1438

Solexa-75 6.4927 3,625 8.6793 6.7536 3,623 8.9289 6.4596 3,606 8.4800 6.7753 3,864 8.7930

Diversity (D), richness (R), and taxonomic diversity (TD) of the datasets as a function of the mapping algorithm.
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space of parameters and/or reporting the best

matches only. Exhaustive alignment becomes

paramount here, but most current mapping pro-

grams—typically based either on seeding strate-

gies or on a more or less arbitrary choice of a

‘best’ alignment out of many possible ones—are

not exhaustive. The quantification of this effect

for contiguous mapping (no indels allowed)

shows that the use of non-exhaustive alignment

schemes can lead to a substantial misrepresenta-

tion of the correct number of existing matches,

which is likely to result in a bias during the

subsequent attribution of the read to a database

of redundant sequences.

(ii) Assignment of HTS reads to species, using

knowledge of the genomic reference but assum-

ing no taxonomic reference (classification tree of

the sequences in the genomic reference) for the

metagenomic dataset. Pairwise similarities

among reads can be used to group them into

clusters of related species (operational taxonom-

ic units). Alternatively, the genomic reference

serves as a template for a multiple alignment of

the reads, which in turn defines pairwise simila-

rities that can also be used to group the reads

and assign them to clusters of related species.

Both solutions lead to an overestimation of di-

versity and richness in the metagenomic dataset.

(iii) Assignment of HTS reads to species at the clo-

sest possible taxonomic rank, using mapping in-

formation and also knowledge of the genomic

and taxonomic reference for the metagenomic

dataset. The ambiguities that arise when a single

read is mapped to more than one sequence in

the genomic reference can be solved in two

possible ways: by assigning ambiguous reads to

either the lowest common ancestor of all

matching sequences in the taxonomic reference,

or to a sequence in the taxonomic reference that

provides optimal sensitivity and specificity. Both

solutions lead to an underestimation of diversity

and richness in the metagenomic dataset.

However, they get closer to the actual diversity

and richness values the more accurate the taxo-

nomic assignment is.

This long list of problems is still far from describing

all the open computational challenges in metage-

nomics. In particular, it goes without saying that

many of the scenarios we did not consider in this

article (one for all, the case of a metagenomic

sample for which a genomic reference is not

known and should be assembled from the sample

itself) will likely require the careful invention of

even more sophisticated analysis protocols.

Key Points

� Computational challenges in metagenomics can be surveyed by

means of appropriate analysis protocols like the one we have

devised for this article.

� Most current tools for the mapping of HTS reads to the gen-

omic reference sacrifice accuracy for efficiency, and

non-exhaustive alignment schemes lead to a misrepresentation

of the correct number of matches and to a bias in the subse-

quent attribution of the read to a database of redundant

sequences.

� Current tools for the assignment of HTS reads to species, using

knowledge of the genomic reference but assuming no taxonom-

ic reference, lead to an overestimation of diversity and richness

in the metagenomic dataset.

� Current tools for the assignment of HTS reads to species at the

closest possible taxonomic rank, using mapping information and

also knowledge of the genomic and taxonomic reference, lead

to an underestimation of diversity and richness in the metage-

nomic dataset, getting closer to the actual values the more ac-

curate the taxonomic assignment is.
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