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Abstract
The receiver operating characteristic (ROC) has emerged as the gold standard for assessing and comparing the per-
formance of classifiers in a wide range of disciplines including the life sciences. ROC curves are frequently summar-
ized in a single scalar, the area under the curve (AUC). This article discusses the caveats and pitfalls of ROC
analysis in clinical microarray research, particularly in relation to (i) the interpretation of AUC (especially a value
close to 0.5); (ii) model comparisons based on AUC; (iii) the differences between ranking and classification; (iv) ef-
fects due to multiple hypotheses testing; (v) the importance of confidence intervals for AUC; and (vi) the choice of
the appropriate performance metric. With a discussion of illustrative examples and concrete real-world studies,
this article highlights critical misconceptions that can profoundly impact the conclusions about the observed
performance.
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INTRODUCTION
The emergence of high-throughput technologies in

modern biology has led to numerous prognostic and

predictive models, notably for cancer subtype classi-

fication, disease diagnosis and prognosis, patient risk

group stratification, and prediction of response

to chemotherapy. Predictive models for response to

chemotherapy in breast cancer, for example, include

a 92-gene predictor for response to docetaxel [1]; a

74-gene predictor of response to paclitaxel and fluor-

ouracil, doxorubicin and cyclophosphamide [2]; an

85-gene predictor of response to docetaxel [3]; and a

44-gene classifier for response to tamoxifen [4].

Classifiers induced from DNA microarray data have

also been used for a successful prediction of risk

groups in cancer patients with different clinical out-

comes [5–12]. Given that such genomic classifiers are

developed for clinical applications, a thorough valid-

ation of their robustness and prognostic performance

is of vital importance [13]. Specifically, the perform-

ance of the fully specified model on independent test

sets determines the final assessment: is this really a

significant model that warrants further, multi-center

studies? Importantly, a genomic classifier is no differ-

ent from any other diagnostic test in this respect and

should therefore be evaluated with the same rigor.

For classification tasks involving only two classes and

models with a continuous output such as class pos-

terior probabilities, the receiver operating character-

istic (ROC) is generally considered the method of

choice for performance assessment [14, 15].

Given that ROC analysis is now integral to

modern biomarker research [15] and also increasingly

employed by the biomedical text mining community

[16], an account of the caveats and potential pitfalls is

timely. Specifically, there are several misconceptions

that can have a profound impact on the interpret-

ation of performance comparisons. Generally,
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genomic classifiers are built using a training set (based

on some data resampling strategies such as cross-

validation), and then validated on an independent

test set [17]. Using simplified examples with rele-

vance to real-world studies, we discuss several pitfalls

of ROC analysis—and how to avoid them.

ROCANDAREAUNDERTHE
CURVE INA NUTSHELL
ROC analysis was originally developed to analyze

the trade-offs between hit rates and false alarm rates

in signal detection [18, 19]. Today, this tool is widely

used in a range of disciplines, notably in machine

learning research. For a classifier with a continuous

output (i.e. scores quantifying the degree of class

membership), ROC curves depict the trade-offs be-

tween the false positive rate (or 1 minus specificity,

depicted on the x-axis) and the true positive rate (or

sensitivity, depicted on the y-axis). These trade-offs

correspond to all possible binary classifications that

any dichotomization of the continuous outputs

would allow. Thus, ROC curves depict a classifier’s

performance over the range of thresholds for sensi-

tivity and specificity.

ROC curves are frequently summarized in a single

value, the area under the curve (AUC), which ranges

from 0 to 1.0. To define AUC formally, we follow

the notation by Hilden [63]. Let P be the probability

that a randomly selected actual positive (þ) case, xþ,

has a lower score, sþ, than an independently, ran-

domly selected actual negative (�) case, x�. Here, a

lower ranking score means that xþ is ranked before

x�; f(sþ) and g(s�) are the distribution functions of

these scores.

P ¼Pr sþ < s�jxþ and x�
� �

¼

ZZ
sþ<s�

f sþð Þ dsþ g s�ð Þ ds�

¼

Z
F s�ð Þ dG s�ð Þ

¼

Z
ROC ordinateð Þ d ROC abscissað Þ

¼AUC:

ð1Þ

Thus, the AUC is the probability that if we pick a

positive and a negative case at random, then the clas-

sifier will assign a lower ranking score to the positive

case (hence, rank it before the negative case). This

corresponds to a Wilcoxon rank-sum statistic [18].

To illustrate this summary statistic, assume that a

classifier produces class posterior probabilities for the

positive class as shown in Figure 1A. Under the as-

sumption of equal misclassification costs for false

positive and false negative classifications, P¼ 0.5 is

here the optimal threshold, providing for the best

trade-off between sensitivity and specificity of 0.80,

respectively. Coincidentally, the resulting (shaded)

AUC is also 0.80 in this example. What this means

is that the classifier commits five ranking errors out

of a possible total of 25: instance #3 (a negative)

is ranked before #4, #5 and #8 (positives), and

instances #6 and #7 (negatives) are ranked before

#8 (a positive).

A ‘perfect’ classifier will have a ROC curve pas-

sing through (0, 1) and an AUC of 1.0. In contrast, if

we randomly guessed the class labels by tossing a fair

coin, then we would expect to correctly classify half

of the positive and half of the negative cases, which

corresponds to the point (0.5, 0.5) in ROC space. If

we predicted 60% of the cases as members of the

positive class using a biased coin, then we would

expect to correctly predict 0.6 times the number of

positive cases, i.e. 0.6� 5¼ 3, hence sensitivity

would be 3/5¼ 0.6. Concomitantly, the specificity

is expected to decrease to 2/5¼ 0.4, or equivalently,

the false positive rate is expected to increase to 0.6,

leading to the point (0.6, 0.6) in ROC space. Thus,

the ROC curve of any random guesser is expected to

be the diagonal y¼x (Figure 1B), and we can select

any point on this line by changing the bias of the

random guesser. The expected AUC of a random

classifier is 0.5. An AUC of 0.5 is therefore com-

monly interpreted as an indicator for a useless

model, whereas a value of 1.0 is associated with a

perfect classifier [15, 21].

By multiplying the ROC ordinate by the prior

probability (or relative frequency) of the class þ,

P(þ), and correspondingly the abscissa by P(�), we

obtain the frequency-scaled ROC (FROC) [63].

The slope of the FROC is interpretable as the pos-

terior odds �, given a specific threshold. In contrast,

the slope of the ROC curve is interpretable as the

likelihood ratio at a given threshold.

ROC analysis enjoys a great deal of popularity in

the machine learning community because it addresses

a range of problems [18], including (i) determining

the optimal operating parameter that minimizes the

error rate or misclassification costs under specific class

and cost distributions; (ii) identifying conditions

under which two classifiers have unequal perform-

ance (i.e. a classifier A may be uniformly preferable

to another classifier B, or A may dominate B in some
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scenarios, whereas B may dominate A in others);

(iii) identifying conditions under which a classifier

performs no better than random by chance; and

(iv) comparing classifiers regardless of units and

scale. Thus, ROC curves convey all information

necessary to assess the performance of a scoring

classifier.

In contrast, common accuracy-based metrics (such

as error rate, sensitivity and specificity) derived from

the confusion matrix depend on a user-defined,

single threshold value, which is often arbitrary. A

major advantage of ROC curves is that they depict

the performance of the classifiers over the complete

range of threshold values. As the ROC curve is

threshold-independent, so is the resulting AUC.

Consequently, ROC and AUC are considered the

most objective method for evaluating and comparing

classification performances and recommended for the

evaluation of binary classifiers [15].

A ROC curve is convex if any straight line inter-

polating between two points on the curve is never

above the curve. Here, we follow standard machine

learning terminology and use ‘convex’ to emphasise

that the convex hull encloses the points on the ROC

curve. In mathematical terms, the function defining

the convex hull is concave (see also ref. [64], p. 109).

The curve in Figure 1B is not convex but has two

concavities: one between (0.0, 0.4) and (0.2, 0.8),

and another between (0.2, 0.8) and (0.6, 1.0).

Linear interpolation corresponds to making a

random choice between the two extreme points.

The simplest example of this is the ascending diag-

onal, which as we have seen corresponds to making a

random choice between ‘always predicting the posi-

tive class’ [the point (1, 1)] and ‘always predicting the

negative class’ [the point (0, 0)]. If a ROC curve has

a concavity, it means that two thresholds exist be-

tween which the classification scores perform worse

than random guessing. In Figure 1A, we have a

negative before two positives between thresholds

0.8 and 0.5, and a positive after two negatives be-

tween thresholds 0.5 and 0.2. One obvious way to

deal with this situation is to revert to random gues-

sing between those thresholds, or—what practically

works out as the same thing—fix the classifier’s score

to a constant in that interval. For example, we could

set P(x)¼ 0.6 for instances #3 to #5 and P(x)¼ 0.3

for instances #6 to #8. If a positive and a negative

receive the same score, then this counts as half a

ranking error. So we have reduced five full ranking

Figure 1: An example of a ROC curve. (A) Ten test cases are ranked in decreasing order based on the classification
score (e.g. estimated class posterior probabilities). Each threshold on the score is associated with a specific false
positive and true positive rate. For example, by thresholding the scores at 0.45 (or anywhere in the interval between
0.4 and 0.5), we misclassify one actual negative case (#3) and one actual positive case (#8).We may translate this
into a classification rule: ‘if p(x)� 0.45, then the class is þ, else the class is �’. The resulting false positive rate is
0.2, and the true positive rate is 0.8. The corresponding point in ROC space is (0.2,0.8). (B) Proceeding analogously
for all possible thresholds gives the ROC curve. The number of line segments corresponds to the number of cases
(here, 10); the number of junction points corresponds to the number of intervals where we can set the thresholds
(i.e. one plus the number of cases).The threshold associated with the point (0.2,0.8) is the optimal operating thresh-
old in this example, where optimality means that the sum of sensitivity and specificity is maximal. The shaded area
shows the area under the curve, AUC¼ 0.80, which quantifies the classifier’s performance over all possible thresh-
olds. The dotted line y¼x is the expected ROC curve of a random guesser.
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errors to four half errors and one remaining full error

(as negative #3 is still ranked before positive #8), and

the AUC of the ‘convexified’ curve is 0.88. Note,

however, that in this example the AUC of this con-

vexified curve is larger than the AUC of the original

curve (0.80). The process of convexifying introduces

a positive bias of the estimated AUC relative to the

true AUC for the large-sample setting. Thus, for the

evaluation of classification performance, it is import-

ant to keep in mind that the AUC resulting from

‘convexification’ is an upward-biased statistic.

There is a well-defined algorithm for determining

the minimum set of thresholds spanning all concav-

ities in the curve. The result of interpolating between

those thresholds is called the ROC convex hull [18].

Furthermore, if the slope of a convex hull segment is

s (and the class distribution is uniform), then a cali-

brated probability is obtained by setting the classi-

fier’s score to s/(1þ s). In the example, we would

predict P(x)¼ 1.0 for instances #1 to #2,

P(x)¼ 0.67 for instances #3 to #5, P(x)¼ 0.33 for

instances #6 to #8, and P(x)¼ 0 for instances #9 to

#10. In general, for a class ratio r¼P(þ)/P(–), we

obtain calibrated probabilities as sr/(1þ sr).

CAVEATSANDPITFALLS OF ROC
ANDAUC
Despite these merits, ROC and AUC are not free

from criticisms [23–25, 64]. Adams and Hand have

shown that for calculating AUC, summarizing

over all possible thresholds can be misleading [23].

In fact, as ROC curves and AUC are threshold-

independent, they describe a classifier’s performance

over the entire operating range, which includes re-

gions of no practical relevance such as the extreme

right (high false positive rate) or extreme left side

(low true positive rate).

Drummond and Holte argued that ROC analysis

is inadequate for machine learning researchers in sev-

eral important respects and proposed cost curves as an

alternative [24]. Cost curves depict the normalized

expected costs of classification as a function of the

(predefined) misclassification costs and class distribu-

tions. Cost curves are conceptually similar to regret

graphs [26] and convey the important informa-

tion about binary classification performance, similar

to ROC curves. However, compared with ROC

curves, cost curves can be more easily interpreted

when two classifiers have unequal performance for

different operating points, i.e. when their ROC

curves cross. To identify the conditions under

which one classifier outperforms its competitor, we

need to calculate and inspect iso-performance lines in

ROC curves. An iso-performance line is a line on

which points of equal performance are located [19].

Let FP and TP denote false positive and true positive,

respectively. Then two points in ROC space,

(FP1, TP1) and (FP2, TP2), have the same per-

formance if (TP2 – TP1)/(FP2–FP1)¼ c(þ,x–)P(x–)/

c(–,xþ)P(xþ), where c(þ,x–) and c(–,xþ) indicate

the costs for misclassifying an actual negative and

an actual positive case, respectively; P(�) denotes

prior probability. In contrast, the x-axis of cost

curves directly shows the conditions under which

one classifier is superior to another.

Lobo et al. [25] noted that the AUC can invite

misleading interpretations. Although their study

focused on geographical distribution models, their

concerns are also relevant for clinical microarray re-

search. To address some of these shortcomings, vari-

ants of the conventional AUC have been proposed,

for example, the partial AUC [27]. Vanderlooy and

Hüllermeier [28] investigated various variants of the

AUC, but they concluded that these variants are in-

effective for model evaluation and selection. Indeed,

the conventional AUC still appears to be the metric

of choice for evaluating and comparing binary clas-

sifiers [14, 15]. Genomic studies frequently involve

the induction of hundreds of classifiers, in combin-

ation with various gene signatures, and a complete

ROC analysis (with a visual inspection) is often im-

practical. Thus, the ultimate assessment is often solely

based on the AUC. However, there are several mis-

conceptions with respect to the interpretation of this

statistic. To highlight these issues, we first revisit the

differences between ranking and classification.

Classification and ranking are two
different concepts
For ROC analysis, it is no prerequisite that a classifier

produces calibrated estimates such as posterior prob-

abilities. It is sufficient that the classifier outputs rela-
tive scores for positive and negative instances [19].

A scoring classifier outputs a numeric score s for

each test case x, s(þ |x). This score quantifies the

degree of class membership to the positive class.

Assuming that these scores are expressed on an addi-

tive scale and reach a maximum smax in case of cer-

tainty, we can set s(� |x)¼ smax – s(þ |x). The ratio

f(x)¼ s(þ |x)/s(� |x) can then be used to rank the

instances from the most to the least likely positive.
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Rankers can be turned into classifiers by setting a

threshold on f(x). The ROC curve visualizes the

quality of a ranker without committing to a classifi-

cation threshold. Analogously, the AUC quantifies

the ranking ability of a model. Classifiers and rankers

optimize a different loss function. Whereas classifiers

aim at minimizing classification errors, rankers try to

minimize the number of ranking errors.

Consider the problem of predicting the estrogen

receptor (ER) status of breast cancer samples based

on their gene expression profiles. We used a publicly

available microarray data set of 119 breast cancer

samples [9]. This data set contains 34 estrogen recep-

tor negative (ER�) and 85 estrogen receptor positive

(ERþ) cases. Using stratified random sampling, we

generated a training set of 69 samples (20 ER� and

49 ERþ) and a test set of 50 samples (14 ER� and

36 ERþ). Using Welch’s t-test, we selected the

top-30 genes (more precisely, these features are

probe sets, referring to genes, ORFs or ESTs. For

reasons of simplicity, we denote these here as genes),
i.e. those genes with the highest discriminatory

power for the ER status in the training set. Using

the top-ranking genes and diagonal linear discrimin-

ant analysis [dlda, Equation (2)], we built a classifier

(model #1). Then, we applied model #1 to the test

set, as illustrated in Figure 2.

dlda x, cð Þ ¼
XP
i¼1

xi � �xcið Þ
2

s2i
: ð2Þ

Here, c denotes the class (i.e. either ERþ or ER-); p
is the number of genes (here, p¼ 30), xi is the value

of the i-th gene, �xci is the mean of all values of ith
gene in class c, and si

2 is the pooled estimate of the

variance of the ith gene. As a binary classifier, diag-

onal linear discriminant analysis assigns a case x to the

class c that minimizes the sum in Equation (2).

For each case x, we calculated the difference

d(x)¼ dlda(x, ER�) – dlda(x, ERþ) and used it as

ranking score for ROC analysis. The sign of d(x)

was used for the classification decision, where sign

(d(x))¼ –1 means that x is classified as ER�. Loosely

speaking, dlda yields a decision boundary (implicitly),

and the classification result depends on which side

of the boundary a case is located. For the test set,

we obtained AUC¼ 0.96. One actual ER� test

case was misclassified as ERþ, and four actual

ERþ test cases were misclassified as ER� (error

rate¼ 0.10).

Next, we deliberately corrupted the training set by

swapping the class label of a randomly selected ERþ

case and a randomly selected ER� case: the ERþ

case became ER�, and vice versa (Figure 2A, middle

panel). Thus, the conditional distribution in the (cor-

rupted) training set was no longer the same as in the

test set and original training set. As dlda is a deter-

ministic algorithm (unlike, for example, multilayer

perceptrons), we expected to observe a weaker per-

formance of model #2, compared with model #1,

because the training set was corrupted—this was the

only difference between the two models. Would the

AUC of model #2 reflect this somehow inferior

performance?

We selected the top-30 genes as described for

model #1 and built model #2 using dlda. We applied

this model to the same test set as before and per-

formed ROC analysis. We repeated this experiment

three times using different randomly selected ERþ

and ER� cases. In all experiments, the AUC was

equal to AUC¼ 0.96 of model #1. However,

based on sign(d(x))—the side of the boundary that

a case was located—model #2 misclassified one

actual ER� test case as ERþ and six actual ERþ

test cases as ER� (error rate¼ 0.14, in contrast to

error rate¼ 0.10 of model #1). Why is the expected

inferior performance reflected by the increased error

rate, but not by the AUC?

Figure 3 gives a possible explanation. Here, the

cases are intentionally arranged in a grid-like

manner for illustration purposes only.

Model #1 (represented by the vertical line in the

top panel of Figure 3) classifies cases on the left side

as ER� cases and cases on the right side as ERþ

cases. In the test set, model #1 misclassifies five cases

(four ERþ and one ER�). By swapping the class

label of two randomly selected cases (middle panel in

Figure 3), we corrupted the training set. Given that

the classes are imbalanced (a ratio of 20:49), the new

decision boundary is expected to be shifted towards

the majority class, as illustrated by the vertical line of

model #2. For illustration purpose and reasons of

simplicity, we assume here that the new boundary

is shifted parallel to the boundary of model #1.

Clearly, the effect of the label swap on the shape

of the decision boundary depends on the specific

machine learning algorithm. By swapping the class

label of only two cases, as in this example, the separ-

ating hyperplane of a support vector machine would

arguably not change. Different methods with differ-

ent inductive biases have different resilience against

corrupted data. However, the example can be easily

extrapolated to more extreme scenarios with a higher
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level of noise that would affect even robust learners,

too. It is also easy to contrive examples of ‘corrupted’

boundaries that are not shifted parallel to the ‘good’

boundary (for instance, by slightly slanting the

boundary of model #2 in Figure 3). When we

apply the ‘corrupted’ model to the test set, we

make a total of seven misclassifications (i.e. six

actual ERþ cases misclassified as ER�, and one

actual ER� cases misclassified as ERþ).

Importantly, however, the ranking of the test cases

relative to each other remains unchanged, irrespective

of whichever model we use. Thus, the AUC of the

two models is the same. The ROC curves, on the

other hand, are not exactly the same. Their shape is

the same, but they differ with respect to the scores

d(x) that yield the operating points. The identical

AUC could now invite conclusions, such as ‘both

models #1 and #2 are equally good’, ‘both models

have learnt the learning concept equally well’, ‘it

does not matter which model we will use for

future applications’, and so on. However, here we

know that these conclusions are not warranted.

This quandary is due to the a priori defined classi-

fication criterion: the sign of d(x)¼ dlda(x, ER�)

–dlda(x, ERþ), or the side of the boundary where

a case happens to fall. Yet, this is common practice:

the location of a case relative to the boundary (for

example, the separating hyperplane of a support

vector machine) determines the predicted class mem-

bership. Note that this example is not intended as a

cautionary tale warning against dlda. The shifted de-

cision boundary can be explained by the changed

conditional class distributions due to the label swap.

The example illustrates the conceptual difference be-

tween crisp classification and ranking. The example

also shows that model comparisons based on AUC

alone can be misleading.

ROC results should be interpreted with caution

when the models were derived from different train-

ing sets. In practice, this can indeed be the case,

specifically when performances are compared with

results published in the literature. Here, the training

sets are practically never identical due to different data

samplings. It is often a tacit assumption that the

Figure 2: Experiments with deliberately corrupted microarray data. Model #1 is built from the original training
set, whereas model #2 is built from deliberately corrupted training data. Both models are applied to the same
test set.
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training set and the test set originate from the same

distribution, but this is not necessarily the case in

real-world applications [55].

Biases present a real threat to the validity of clinical

microarray studies [30]. Specifically, biases due to mis-

labeled cases—as simulated in the previous example—

can have a profound impact on the validity of

classification results. Such inadvertent mislabelings

indeed occur in real microarray studies [31]. For ex-

ample, a recent study that aimed at deriving gene sig-

natures for the prediction of response to the cancer

drug doxorubicin inadvertently mislabeled ‘sensitive’

and ‘resistant’ cases [32]. Another example is a study

that aimed at developing microarray-based predictors

for response to cisplatin and pemetrexed [33]: class

labels were accidentally corrupted, as shown in

ref. [31]. Another study aimed at developing a gen-

omic classifier for predicting response to primary

platinum-based chemotherapy in ovarian cancer,

and the classifier achieved an AUC of 0.875 [34].

However, Baggerly et al. [31, 35] pointed out severe

problems due to mislabeled cases in this data set. A

further study [36] that validated gene signatures for

the prediction of response to neoadjuvant chemo-

therapy has been criticized for confounding treatment

effects with run batch effects [31]. Despite this re-

ported confounding, a high value of AUC (0.875)

could be achieved [36].

Clearly, knowing the caveats and pitfalls of ROC

analysis, specifically the difference between ranking

and classification, is no safeguard against problems

that are due to mislabelings or run batch effects.

However, the example shown in Figure 3 offers a

possible explanation why it can be possible to ob-

tain relatively high values of AUC despite corrupted

data.

Figure 3: Experiments with deliberately corrupted microarray data.Circles represent cases of class ER^, full dots
represent cases of class ERþ. Model #1 results from the application of diagonal linear discriminant analysis to the
original training set (upper panel). Model #2 results from the application of diagonal linear discriminant analysis to
a corrupted training set (middle panel), where the class label of two randomly selected cases (1 ERþ and 1 ER�)
were swapped. Both models are then applied to the same test set (bottom panel). The training and test cases are
arranged in a grid-like manner for reasons of simplicity.
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The fallacy of the undistributed middle
Perhaps the most common misconception is that

AUC¼ 0.5 necessarily implies that the classifier is

no better than random guessing, but this is not ne-

cessarily the case, as discussed in ref. [18]. Indeed, if

we randomly guess the class labels of the test cases

(for example, by flipping a fair coin), then we expect

to achieve an AUC of 0.5. It is a fallacy, however, to

assume that any classifier that achieves AUC¼ 0.5 is

no better than random guessing and has therefore no

predictive ability. This common misconception is a

‘fallacy of the undistributed middle’: all random

models score an AUC of 0.5, but not every model

that scores an AUC of 0.5 is random. In fact, even a

classifier that is perfect in some sense can achieve an

AUC of 0.5.

Consider a classifier that is trained to predict either

y¼ ‘disease’ or y¼ ‘normal’ for a case x. Assume

that a training set contains hundreds of variables,

and assume that only variable i has predictive rele-

vance, while all other variables represent pure noise

or are otherwise irrelevant for the classification task.

Let us assume that i exceeding a threshold t1 indicates

‘disease’ and that i being below another threshold t2
also indicates ‘disease’. Thus, if i2 [t2, t1], then the

status is ‘normal’ and ‘disease’ otherwise. Manifold

biomedical examples could be cited; for example,

consider the variable ‘systolic blood pressure’ where

values outside the normal range indicate ‘disease’, or

the expression of a gene that should be in a normal

range, i.e. neither over- nor under-expressed. Now

assume that the classifier has correctly identified i as

the only predictive variable and bases all predictions

on its numerical values. Thus, assume that the clas-

sifier has learnt the decision function c(y¼ ‘normal’ |

x, i2 [40; 70]) and c(y¼ ‘disease’ | x, i =2 [40; 70])

from the training set. The classifier then applies this

function to the test set. Figure 4A shows the

prediction results for a test set of 12 cases. This

‘one-feature’ classifier identified the only predictive

variable and correctly classified all test cases. From an

Occam’s razor perspective, the classifier is both

parsimonious and self-explanatory. The simple clas-

sification rule might also give insights into the patho-

physiology. Hence, this classifier could rightly be

considered perfect. However, consider now the

ROC curve (Figure 4B) that results from the ranking

of the test cases based on the attribute values.

The example shown in Figure 4A is an instance of

an XOR problem, which requires two decision

boundaries for the separation of the test cases based

on attribute i. Here, the AUC is 0.5 [95% confidence

interval (CI), 0.10–0.90], which could lead to the

conclusion that this classifier is no better than

random guessing. This discrepancy can be explained

by the fact that the AUC quantifies the ability of a

classifier to rank cases relative to each other. Indeed,

in this example, the ranking is no better than random

by chance (P¼ 1.0; Wilcoxon rank-sum test). The

ROC curve shows that this classifier is not a typical

random guesser because the curve is different from

the expected diagonal line y¼x. However, genomic

studies frequently involve the evaluation of hundreds

of classifiers [39], and a visual inspection is therefore

Figure 4: (A) A test set containing n¼12 cases of two classes that require two decision thresholds. (B) AUC of 0.5
does not necessarily indicate a useless model if the classification requires two thresholds (XOR problem).
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not always feasible. In such scenarios, the AUC is

then used as a single criterion, and models that

score AUC¼ 0.5 are deemed useless [21] but pos-

sibly undeservingly so.

Note, that the classifier in this example is not a

scoring classifier; the ranking of test instances was

based on the ‘raw’ values of attribute i. The classifica-

tion rule of this simple ‘one-feature’ classifier did not

produce any ranking scores, such as posterior prob-

abilities or other scores quantifying the degree of class

membership. Therefore, we can object that the dis-

crepancy in the previous example is due to inad-

equately chosen ranking scores, thus a violation of

the ROC assumptions. This problem could be easily

resolved in this example by considering posterior class

probabilities, i.e. P(y¼ ‘normal’ | x, i2 [40; 70])¼ 1

and P(y¼ ‘normal’ | x, i =2 [40; 70])¼ 0. These scores

would then lead to AUC¼ 1.0. It has been noted that

ROC analysis can be performed for any variable with

a continuous spectrum of results [38]; however, it is

more precise to note that the values need to be proper

ranking scores.

But even calibrated scores can lead to AUC¼ 0.5,

although the classifier is not random. Consider the

example in Figure 5A (adapted from ref. [68]). Here,

the positive and negative instances (represented by

squares and circles, respectively, with 1 unit length

distance from each other) are not linearly separable

but require two classification boundaries. The dotted

line represents a separating hyperplane that defines

the boundary between the positive and the negative

class. Here, the signed distance (Figure 5B) to the

boundary is the ranking score for ROC.

The hyperplane in Figure 5A is unable to solve the

XOR problem, but it is not a random classifier, as

the AUC might suggest. Linear separating hyper-

planes are popular classifiers in genomic studies, for

example, hyperplanes resulting from support vector

machines. Commonly, the (signed) distances to the

decision boundary are used as a surrogate for estimat-

ing the degree of class membership (often with prob-

abilistic semantics) and used to perform ROC

analysis [39]. Other classifiers, such as the family of

linear discriminant models, produce class posterior

probabilities, and the decision boundary is the set

of points for which the log-odds are zero. If a clas-

sifier assigns the highest scores to exactly half of the

instances of a particular class and the lowest scores to

the other half as in the example shown in Figure 5B,

then the AUC is exactly 0.5. Such a classifier per-

forms excellently on some of the instances, but this

performance is offset by the very poor performance

on some other instances. However, such a classifier is

clearly not equivalent to the flip of a coin. Thus, if

we accept AUC¼ 0.5 as a binary indicator for a

random classifier, then we might discard some

models that could indeed deserve closer inspection

of their ROC curves.

ROC analysis and the early retrieval
problem
The early retrieval problem arises when we are inter-

ested in the top-ranked test cases only [15, 37], for

example, in classification scenarios where the

number of predicted objects is in the order of several

hundreds or even thousands. An example is a drug

discovery study that aims at ranking a multitude of

chemical compounds based on their toxicological

effect [40]. Here, it is typically possible to follow

up on only a small number of predicted cases, thus,

Figure 5: (A) XOR problem comprising two instances of the positive class (#1 and #3) and two instances of the
negative class (#2 and #4). The instances are placed at a distance of 1U length from each other. The separating
hyperplane (dotted line) is used as decision boundary. (B) The instances are ranked based on the signed distance
from the decision boundary. (C) ROC curve resulting from the scores of signed distances (example adapted from
ref. [68]).
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the top-ranked cases. In this scenario, conventional

ROC curves (and AUC) are inadequate.

Consider an example where a classifier predicts the

label of 1000 test cases, with 500 cases belonging to

the positive and 500 cases belonging to the negative

class. Assume that we have the resources to further

investigate only 100 cases predicted as ‘positive’.

Ideally, the top-100 of the ranked list would then

contain cases of the positive class only, whereas the

ranking of the cases is irrelevant in the remainder of

the list. Figure 6 shows the ROC curve for a simu-

lated classification result, in which a model ranks 90

actual positive and 10 actual negative cases in the

top-100 list. In the remainder of the list, 410 actual

positive and 490 actual negative cases are randomly

distributed. This model would be fit for our purpose.

Here, the steep increase in the early curve (dashed

box in Figure 6) indicates that most of the top-

ranked cases are indeed actual positive cases. But

the good performance with respect to the 100 top-

ranked cases is offset by the random performance

with respect to the remaining 800 cases, which

leads to an AUC of 0.58 only. But clearly, as we

are not interested in the entire ROC curve, the

AUC is meaningless.

Recently, Swamidass et al. [40] proposed the con-
centrated ROC (CROC) and the concentrated AUC
(cAUC) to address the early recognition problem.

In clinical microarray analysis, the number of pre-

dicted cases is typically much smaller than in the

example shown in Figure 6. However, CROC is

also suitable to distinguish whether a model with

AUC¼ 0.5 is in fact a random classifier. Therefore,

even for small sample sizes, CROC is an interesting

alternative to ROC.

The significance of the AUC in multiple
testing scenarios
The AUC is frequently accompanied by a P-value,

which reflects the probability of obtaining an AUC

as high as or higher than the observed one when we

base all predictions on random guessing. When we

assess the performance of multiple models, for ex-

ample, a single inductive learning algorithm applied

to various gene signatures, we are effectively entering

the arena of multiple hypotheses testing. Hence, the

P-values for the individual AUC metrics must be ad-

justed to account for the multiplicity effects. The

global (or family-wise) null hypothesis is that no clas-

sifier is a significant model. Suppose that a genomic

study involves n¼ 100 classifiers that, in fact, are no

better than random guessing. If we assess the AUC of

each individual model at aindividual¼ 0.05, then we

expect to make five false positive decisions; hence,

we erroneously conclude that the AUC of these five

models is significantly >0.5. An approach to address

this problem would be the Bonferroni’s adjustment,

which controls the family-wise error rate at the de-

sired level afamily¼ 0.05 by dividing aindividual by the

total number of models (here, aindividual¼ 0.05/100).

This adjustment guarantees the control of the signifi-

cance level, but it is also known to be very conser-

vative and to lead to a high type II error. Holm’s

correction represents a more liberal approach and

involves an ordering of the individual P-values in

increasing order [41]; here, the smallest P-value

is compared to aindividual/n, the second smallest

P-value is compared to aindividual/(n ^1), and so on.

There exists a plethora of methods addressing the

multiplicity problem; for an overview, see for ex-

ample [42]. Whereas the multiple testing problem

arising in gene selection is now generally acknowl-

edged [43], the problem of multiple models may

not have received adequate attention in genomic

studies yet. Technically, the same statistical methods

could be applied. It is difficult to recommend a spe-

cific correcting method, though. The choice of the

correcting method depends on how liberal or con-

servative the researcher wishes to be. In our experi-

ence, Holm’s method works reasonably well for

Figure 6: Illustration of the early retrieval problem
for a simulated classification problem comprising 500
positive and 500 negative cases. The top-100 list of
ranked cases contains 90 positives and 10 negatives; in
the remaining list, the cases are randomly ranked.
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controlling the family-wise false positive rate (see

also [44]).

A central question, however, remains open: what

represents an objectively ‘good’ value of AUC? This

question is difficult to answer for a specific problem

at hand, let alone for the general case. The

multiplicity-adjusted P-value does not provide an

answer to this question.

CIs are more meaningful than P-values
The P-value for the AUC of a specific model quan-

tifies the extent to which it deviates from a model

with AUC¼ 0.5. However, as we have shown with

the fallacy of the undistributed middle, a model with

AUC¼ 0.5 does not necessarily need to be a random

guesser. Yet there is another, more fundamental

problem. The P-value is not to be mistaken as the

posterior probability that the null hypothesis is true.

The P-value is the probability of observing an out-

come as extreme as or more extreme than the actual

one, given that the null hypothesis is true: P-value¼

Pr(observed or more extreme | H0 is true).

Transposing the conditional would be another fal-

lacy. A critically important point is that the P-value

does not convey information about the effect size.

For example, assume that two models are compared

on a very large test set. A significance test for the

difference between the AUC of two models may

give a ‘highly significant’ result with P < 0.0001,

but the actual, absolute difference (i.e. the effect

size) between the areas could be too small to be of

any practical relevance.

CIs, on the other hand, have long been advocated

as a more informative alternative to hypothesis test-

ing [45–48]. For the AUC, Hanley and McNeil [49]

proposed a CI by assuming that the metric is an ap-

proximately normally distributed random variable.

However, the normal assumption is violated, and

the statistical underpinning therefore questionable.

In contrast, methods that do not rely on the normal-

ity assumption often provide intervals that are too

wide to be of any practical use [50]. Cortes and

Mohri [50] proposed a distribution-independent al-

ternative for deriving a CI for AUC by using a vari-

ance estimation over all classifications with a fixed

error rate. The problem of this approach, however,

is that it entangles AUC with a fixed error rate. In six

benchmark data sets, the method by Cortes and

Mohri [50] provided tight intervals, hence appears

to be of practical use; but also the method by

Hanley and McNeil performed well despite the vio-

lated assumptions.

Bootstrapping is an alternative for the construction

of approximate CIs. In short, bootstrapping is a data

resampling strategy that repeatedly, uniformly picks

(with replacement) instances from a data set to gen-

erate bootstrap samples [51]. Each bootstrap sample

contains the same number of cases as the original

training set, but with duplicates. We could derive a

bootstrapped CI for AUC as follows. First, we

sample several hundred bootstrap test sets. Then,

we calculate the AUC of the classifier on each set.

Finally, we use the a/2 and 1–a/2 percentiles of the

distribution to obtain an empirical (1 – a/2)-level CI.

Using the percentile bootstrap, we can also derive an

approximate CI for the difference between the AUC

of two classifiers. If this interval does not include

zero, then we can be 95% confident that the two

models have different performance; hence, we can

be confident that the winning model is truly better

for the specific task at hand.

In addition, the interval can tell us something

about the effect size, i.e. whether this difference is

of any practical relevance. In a multiple testing scen-

ario where several such intervals are constructed, the

individual significance levels need to be adjusted ac-

cordingly. Note, that we cannot compare the 95%

CI of two different values of AUC (i.e. to check

whether they overlap or not) to mimic a significance

test of difference at the 5%-level.

Which metric matters for practical
applications?
Figure 7 shows the most common performance met-

rics in a binary classification task.

In real-world applications, it is often difficult or

even impossible to define the costs for false positive

and false negative classifications. In such scenarios,

metrics like the AUC are attractive because they

average over the range of all possible thresholds,

which are determined by the costs. Hence, AUC

Figure 7: Confusion matrix; common performance
metrics are accuracy¼ (aþd)/n; errorrate¼ (bþ c)/n;
sensitivity¼a/(aþc); specificity¼d/(bþd); positive
predictive value¼ a/(aþb); negative predictive value
¼ d/(cþd).
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averages over the range of all possible costs.

However, this also includes costs that, although the-

oretically possible, have no practical relevance, as

shown in the early recognition problem.

Predictive genomic classifiers are models for the

prediction of response to therapy based on gene ex-

pression data. Here, sensitivity refers to the detection

of responsiveness among true responders. These

models are often intentionally tailored for a high

sensitivity and a high negative predictive value

(NPV) [52, 53] because, ideally, we wish to identify

at an earlier stage those patients who are likely not to

respond, so that alternative treatment avenues could

be pursued [36]. Recent examples of such models

include a 30-gene classifier to predict response to

neoadjuvant chemotherapy in breast cancer [39],

and a 50-gene model to predict colon cancer recur-

rence [54]. ROC curves, however, depict sensitivity

as a function of (1 minus) specificity. Thus, they do

not readily reflect the desirable NPV. Therefore, an

AUC-optimizing model may not be what we are

looking for. Hand pointed out that in classification

studies, there is frequently a mismatch between the

criterion used to select and assess a model and

the criterion that actually matters in the real

application [55].

Open source software for ROC analysis
There exists a variety of both commercial and free

software tools to perform ROC analysis. Here, we

will focus on open source software. Freely available

tools enjoy a great popularity in academic research

because of the support from a generally large user

community. This is particularly true for implemen-

tations based on the language and environment R

[29], which is widely regarded as the de facto standard

for statistical computing. For bioinformatics, the R

bioconductor project [56] provides a variety of packages

for data analysis and visualization. These packages

include the library ROC that provides examples

for ROC analysis in the context of microarray re-

search. ROCR [57], another R library, offers argu-

ably the most comprehensive collection of features,

including advanced functions such as the ROC

convex hull and functions to analyze results from

resampled data sets. ROCR contains additional

functions for analyzing and visualizing scoring classi-

fiers, including cost curves [24]. The R library

caTools [58] contains the function colAUC, which

plots ROC curves and calculates AUC. A minor

shortcoming of these packages is that they do not

accompany the AUC with a P-value, in contrast to

the function plot.roc of the library analog [59].

A commonly lacking (albeit important) feature of

all these R functions is the calculation of a CI for

AUC. As a workaround, we could combine the

function boot.ci of the R library boot with the func-

tions for ROC analysis. The function boot.ci

provides five different bootstrapping methods to

generate approximate CIs, including the percentile

method described in the section ‘CIs are more mean-

ingful than P-values’.

Among the open source data mining suites, Weka

is arguably the most widely used in bioinformatics

research [60]. Weka provides functions for ROC

analysis, but does not readily give CIs for AUC.

StAR (Statistical comparison of ROC curves, [61])

is a software specifically designed for the pair-wise

comparison of AUC of different classifiers. This

unique feature of StAR is frequently missing in

other software packages, including commercial

tools such as GraphPad Prism [62]. Prism, however,

is one of the few tools that accompany the AUC

with a CI by default.

DISCUSSION
The ROC has emerged as the method of choice for

assessing and visualizing the performance of binary

genomic classifiers. ROC analysis offers advantages

over conventional scalar metrics as it disentangles

performance evaluation from misclassification costs,

class imbalances and single thresholds. To avoid

potentially misleading interpretations, it is important

to acknowledge the fundamental difference between

classification and ranking. ROC measures the latter.

Here, we not only discussed the merits of ROC but

also paid attention to possible pitfalls in its interpret-

ation, particularly with respect to its scalar summary

statistic, the AUC. In real-world genomic studies, it

is not uncommon to evaluate thousands of classifiers.

As it is impractical to visually inspect all resulting

ROC curves, summary statistics are the de facto stand-

ard method to compare and select models. Also,

introductory texts sometimes suggest that the ration-

ale for plotting ROC curves is that they allow the

calculation of the AUC [63].

Although the AUC is certainly a more meaningful

performance measure than accuracy [20], it has

attracted criticisms [23–25, 64]. Recently, Hand

showed that a particular interpretation of AUC as

expected minimum loss is incoherent in that the
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expectation is taken over classifier-dependent score

distributions [64]. Hand proposed the new

H-measure as an alternative to AUC (an implemen-

tation in R is available at ref. [22]).

Another problem is that microarray data are typ-

ically characterized by the small-n-large-p problem:

the data set contains many genes (p) but only very

few cases (n) [65]. ROC curves derived from such

small-sample data sets may not reliably reflect a clas-

sifier’s true performance [66]. Hanczar et al. [66] cau-

tioned against the use of ROC analysis unless the

sample size is ‘very large’, yet it remains an open

question how large a sample size is needed for a re-

liable ROC analysis.

Performance metrics in a clinical setting should

take pretest probabilities into account [67]—a feature

that AUC cannot provide. As a (one-dimensional)

scalar, the AUC cannot paint the full picture of a

classifier’s performance, in contrast to the

two-dimensional ROC curves. Judgments based on

only point estimates for AUC should therefore be

interpreted with caution.

In a clinical setting, a central question is how

closely AUC measures clinical gain. Consider the

hypothetical scenario in which two patients with a

suspected life-threatening condition require an

urgent treatment. However, only one patient really

has this condition, whereas the other patient does

not. Suppose that the hospital has the equipment

to treat only one patient. Here, AUC is interpretable

as the chance of choosing the right patient to treat,

and (1 – AUC) is the number of missed preventions

of avoidable deaths per triage situation. In this (ad-

mittedly extreme) scenario, the clinical gain is mani-

fest. In other, perhaps more realistic scenarios, the

clinical gain is less direct, but it is actually the out-

come of real interest. From this perspective, we may

regard AUC as one (of many) inputs for a decision

process that aims at maximizing some predefined

clinical gain. For the general case, we cannot

derive any summary statistics from ROC to directly

measure clinical benefit or loss [67]. Hilden suggested

utility models of pseudo-regret as a more direct ap-

proach, for example, models based on the quadratic

(Brier) pseudo-regret function that rank classifiers

by the expected pretest-posttest difference in utility

[63, 67].

One may argue that the criticisms against AUC do

not pertain to ROC analysis per se. Indeed, ROC

curves are a valuable tool for evaluating and compar-

ing classifiers, and we do encourage the use of ROC

analysis. However, it is easy to read too much in a

simple summary statistic such as AUC. We hope that

this article contributes to a more careful use and in-

terpretation of AUC and hence of ROC analysis.

Key Points

� ROC analysis measures a model’s ability to rank positive and
negative cases relative to each other.

� Not all classifiers with an AUC of 0.5 are random guessers.
� The AUC cannot directlymeasure clinical gain (or loss), which is

the outcome that reallymatters in a clinical setting.
� AUC should always be accompaniedby a confidence interval.
� For predictive genomic classifiers, the negative predictive value

may bemore important than AUC.
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