
Visualizing next-generation sequencing
data with JBrowse
OscarWestesson, Mitchell Skinner and Ian Holmes
Submitted: 6th October 2011; Received (in revised form): 17th November 2011

Abstract
JBrowse is a web-based genome browser, allowing many sources of data to be visualized, interpreted and navigated
in a coherent visual framework. JBrowse uses efficient data structures, pre-generation of image tiles and client-side
rendering to provide a fast, interactive browsing experience. Many of JBrowse’s design features make it well suited
for visualizing high-volume data, such as aligned next-generation sequencing reads.

Keywords: genome browser; web; next-generation sequencing

INTRODUCTION
JBrowse is a web-based genome browser [1]: the user

interface is displayed through a standard web browser

(e.g. Microsoft Internet Explorer, Mozilla Firefox or

Google Chrome), rather than a stand-alone program,

allowing the user to view various forms of data

related to a particular genome. Data input can be

done via a wide variety of formats and databases:

FASTA [2] for sequence files, BED [3], GFF [4] or

BAM [5] for annotations of discrete features such as

genes and experimentally detected transcripts, WIG

[6] for quantitative per-base annotations, and Chado

[7, 8] or Bio::DB [9] for relational database represen-

tations of these data types.

JBrowse is distinguished by running primarily on

the web browser client: the user’s machine does most

of the work in arranging the browser’s display, which

both minimizes the amount of required client–server

communication and enables many viewers to view

the same centralized data without overloading the

server. This, combined with its implementation in

the JavaScript programming language, enables a

more modern user interface while also making it

an ideal tool for visualizing next-generation sequen-

cing data. JBrowse is freely available under the GNU

lGPL via GitHub: http://www.github.com/

jbrowse/.

CONTEXTANDBACKGROUND
Most web pages, including some web-based genome

browsers, are implemented using the Common

Gateway Interface (CGI), which necessarily imposes

a page-based model of user interaction. In many typ-

ical uses (e.g. searching the web, reading an online

newspaper), this functions intuitively and does not

interrupt user attention or interpretation of the page.

Browsing a genome, however, is more like navigat-

ing a very large map: moves between locations and/

or zoom levels must be done in such a way as to not

disorient the user, but the space to be viewed is very

large. In order to design a genome browser capable

of offering an intuitive user interface over an internet

connection, several hurdles need to be overcome.

In reloading a page after each navigation event

(changing co-ordinates, changing zoom level,

adding a track), interpreting the new display will

often require the user to pick out landmark features

common to the previous display inorder to re-orient

themselves. JBrowse avoids this problem by adopting

a Google maps-style browsing interface. Navigation

event transitions occur without the current display

disappearing. Instead, panning and scaling occur via

smooth animated transitions.

Crucial to achieving this browsing style is the

division of labor between client and server.

Corresponding author. Ian Holmes, Department of Bioengineering, University of California, Berkeley, CA, USA. Tel:þ510 666 2790;

Fax: þ510 666 2791; E-mail: ihh@berkeley.edu

The authors are researchers at UC Berkeley working on various aspects of biological sequence analysis and visualization. Oscar

Westesson uses JBrowse on viral genomes; Mitchell Skinner designed and programmed the JBrowse features described here, and

now works for the JBrowse sister project, WebApollo; and Ian Holmes is the PI of the JBrowse project.

BRIEFINGS IN BIOINFORMATICS. VOL 14. NO 2. 172^177 doi:10.1093/bib/bbr078
Advance Access published on 12 March 2012

� The Author 2012. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/14/2/172/208227 by guest on 19 April 2024

http://www.github.com/jbrowse/
http://www.github.com/jbrowse/


Traditionally, in a CGI-based implementation, each

page reload is handled by the server, which deter-

mines what to display, and then arranges it in a

format that the client machine can read. With

many users querying the same server, especially if

the data to be queried is large, the central server

can quickly become overloaded, slowing responses

for all users. JBrowse avoids this problem by enabling

the client machine (the computer running the user’s

web browser) to perform most of the computation-

ally demanding tasks. When a user connects to a

JBrowse server, files are sent from the server which

are sufficient for the client to perform data querying

and rendering operations. This frees up the server by

distributing the workload onto the users, enabling

more people to quickly connect to the same central

server while simultaneously decoupling user inter-

actions from client–server interactions, allowing for

a more responsive browsing experience.

A genome browser may need to transmit data

from server to client that is larger than what typical

web browsing tasks would demand. Downloading a

track describing the mapping of all next-generation

reads to a particular chromosome, for example,

would be extremely slow. JBrowse adopts a strategy

whereby these data sets are divided by the server

(ahead of time) into small regional chunks that are

quick to download.

There are by now several alternative software

packages that render genome annotations in the

web browser client; notable examples are Anno-J

[10] and Dalliance [11]. Compared with those

tools, JBrowse is accessible to a much broader set

of web users. Anno-J and Dalliance require recent

web browser features—respectively, the HTML5

Canvas element and Scalable Vector Graphics sup-

port—that, while they allow richer graphical effects,

do not exist in the widely used older versions of the

Internet Explorer browser. JBrowse is also distin-

guished by its closer integration with the GMOD

suite of tools (JBrowse began as an offshoot of the

GBrowse genome browser, and tools to migrate

existing GBrowse installations to JBrowse are in

development).

FEATURES
Navigation
A reference ‘ruler’ at the top of the window indicates

the chromosome, with the current viewing area

encapsulated by a red box. A text box allows

specification of the exact coordinates to be viewed,

or the user can manually zoom and pan to the region

of interest in one of several ways: arrow buttons

move the view left or right,þ and� buttons simi-

larly zoom in and out. Small adjustments can be

made by clicking and dragging the entire display

left, right, up or down.

Manipulating tracks
A pane to the left of the data display stores the avail-

able tracks. Tracks can be moved in and out of the

viewing area by a simple drag-and-drop maneuver.

This allows the user to decide which of the tracks to

use in populating the browser—unwanted tracks stay

off the left without cluttering the display. Tracks can

be dragged vertically within the viewing area to re-

order them—especially useful when comparing mul-

tiple-related analyses.

Track types
Tracks are organized into two basic types: ‘feature’

tracks and ‘image’ tracks. Feature tracks describe dis-

crete features with start and end points, such as

coding regions or binding sites. Clicking on a feature

can trigger a configurable option (e.g. clicking a

protein-coding gene may open the corresponding

PFAM page for that gene). ‘Sub-features’ such as

introns and exons can be displayed via a special

glyph style. Image tracks can display any image

aligned to the genome; currently, they are primarily

used to display fine-resolution histograms with a

value defined at each position in the genome.

These are well suited to displaying conservation,

GC-content or other continuously varying data.

There is an API available for programmers who

would like to implement their own image-track ren-

derers, with example code that renders base pairing

arcs indicative of RNA secondary structure.

Semantic zooming
In displaying genomic data at very different scales

(e.g. whole chromosome versus tens of bases), sum-

maries that may be informative at some levels may

not be at others. For instance, a user may want to get

an idea of the genome-scale distribution of a particu-

lar type of feature, and then zoom in to examine one

particular such feature.

To handle this, JBrowse uses semantic zooming: dif-

ferent representations of the data are used at different

zoom levels to maximize the ease of user interpret-

ation [12]. For instance, at lower zoom levels,

NGS data in JBrowse 173
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/14/2/172/208227 by guest on 19 April 2024



JBrowse collapses features into histograms showing

the density distribution of a particular feature, rather

than each individual feature. Similarly, DNA se-

quence is only showed at the highest zoom level,

the only level where it can be readily interpreted.

An example of this is shown in Figure 1, wherein the

mRNA and GeneSpan tracks are both collapsed to

histograms when moving from a �200 kb view to a

7 mb view.

Feature name indexing
When working with large genomes with many fea-

tures, there may be times when navigating using the

aforementioned zoom/pan tools to find a particular

feature may be cumbersome. JBrowse allows search-

ing for features by entering part of the feature’s name

into the navigation text box.

Setup scripts
Currently, JBrowse is installed on a web server by

running a series of scripts at the command line. First,

the reference genome and its chromosomes are

added, providing a base with which to index fea-

tures. Annotations in the form of features and quan-

titative data, whose locations correspond to the

reference genome, are added using one of several

Figure 1: Semantic zooming uses different representations of the same data to maximize the ease of user inter-
pretation across a broad range of zoom levels. When viewing a region of <200kb in (A), individual genes and
mRNA features are shown.When zooming out to a 7 mb region in (B), these two tracks are collapsed to histograms
showing the frequency of each within 100kb regions. Since non-coding RNA features are sufficiently sparse, they
are still individually displayed at both zoom levels (as small vertical lines), but their individual labels are omitted for
readability.

174 Westesson et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/14/2/172/208227 by guest on 19 April 2024



Perl scripts packaged with JBrowse. Finally, once

all the features have been added, their names

can optionally be indexed for efficient feature

searching.

Once JBrowse is installed on a server, anyone with

a web browser and access to the server can browse

the data using the web interface; only the adminis-

trator is required to install JBrowse. Instructions on

the installation of JBrowse (including dependencies)

and usage of these setup scripts can be found at

http://gmod.org/wiki/JBrowseDev/Current.

METHOD
Continuity of user attention is a priority in JBrowse.

Central to accomplishing this goal are the issues of

how data and tasks are split up between the client

and server machines, and how these data are indexed

on the server. Essentially, as much of the workload as

possible is shifted to the client machine, and data on

the server is indexed so as to allow rapid loading of

the data relevant to a given region.

Indices of genomic features and data are generated

on the server when the administrator sets up

JBrowse. The underlying data structure is the

Nested Containment List (NCList), an efficient hier-

archical index for interval sets with sublinear access

time [13]. When a user accesses a JBrowse page from

a (possibly) remote location, static files are sent from

the server to the client, which allow the client to

perform the tasks inherent in browsing: determining

which features overlap the current viewed region

and then rendering the display based on these

features.

Lazy loading
‘Lazy loading’ refers to the practice of postponing the

retrieval (loading) of data from the server until the

latest possible moment: when those data are needed

to render a region that the user is currently (or will

imminently be) viewing [14]. This strategy is key to

the way JBrowse manages large next-generation data

sets. To implement lazy loading, JBrowse uses the

NCList index structure to break the data set into

manageably sized ‘chunks’, each of which is only

downloaded as and when it is necessary. This con-

trasts with indexing strategies used by many browsers

such as GBrowse [15], UCSC [16] and Ensembl [17],

as well as protocols such as DAS [18]. All these stra-

tegies similarly allow the data to be loaded in chunks,

but further allow the chunk co-ordinates to be

specified by the client (via range queries that the

client sends to the server), meaning that the client

must re-assemble the chunks and track overlaps. In

JBrowse, the chunking is an inherent aspect of the

data structure via which annotations are indexed, and

the breakpoints are therefore predetermined by the

server. This allows the server (or its administrator) to

fine-tune the chunking so as to maximize the opti-

mization of network transport, as well as minimizing

computational work both on the client (which never

needs to reassemble chunks, since the seams between

chunks correspond to natural fragment boundaries in

the annotation data structure) and on the server

(which has to do fewer, or indeed no, dynamic

queries).

BAM file processing
JBrowse includes a script to generate a feature track

from a BAM-format index of read-to-reference

genome alignments [5]. The script operates in an

online fashion, avoiding the need to load enormous

BAM files into memory at once.

UCSC human genome database
JBrowse also comes with a script that automatically

downloads track data from the UCSC human

genome database and uses it to initialize a JBrowse

instance.

TECHNOLOGIES
The central challenge of a genome browser is to

process and display a vast array of data in an intuitive,

simple way that is easy for the user to understand and

navigate. JBrowse utilizes various technologies

with this goal in mind: nested containment lists for

indexing features, Patricia/radix tries for indexing

feature names and an online sort for processing

BAM files.

Nested containment lists
Determining the features that overlap a given view-

ing region is a significant portion of the work the

browser must do (whether it is done on the server or

client). Since this step greatly affects the speed and

smoothness of the browsing experience, it is import-

ant for it to be efficient. JBrowse uses NCList to

represent features [13].

NGS data in JBrowse 175
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/14/2/172/208227 by guest on 19 April 2024

http://gmod.org/wiki/JBrowseDev/Current


These data structures allow efficient

[O(nþ log(N)) for an interval set of cardinality N
and n intervals returned by the query] determination

of the intervals contained within a given query inter-

val—in this case, the features contained within a

viewing region.

Feature name indexing
Feature names are indexed in a Patricia trie or radix

trie, allowing efficient searching by feature name.

FUTUREDIRECTIONS
The JSON data format used to store JBrowse track

data is currently being redesigned to improve effi-

ciency, flexibility and the facility to generate tracks

dynamically. Following this redesign, the track

format will be made public, enabling third-party ap-

plications (including web content management

frameworks) to better interface to JBrowse.

A highly active area of JBrowse-related develop-

ment is in the Web-Apollo project, which has

adopted JBrowse as the web-based platform for the

next version of the Apollo genome annotators’ cur-

ation tool. This software includes a number of extra

features, such as the ability to see who else is working

on (or viewing) a given genome at any one instant,

and greater flexibility in drawing tracks using the

HTML5 Canvas element.

Several enhancements have been added to the

experimental forks of JBrowse, which are available

from the JBrowse source code repository (GitHub).

In particular, these include richer ‘widgets’ for orga-

nizing the list of undisplayed tracksthat can get very

large for successful genome projects. One enhance-

ment uses the Dojo tree widget with collapsible

nodes to organize tracks hierarchically. Another

uses the MIT Simile Exhibit widget to allow faceted

browsing of track lists, whereby the track list can be

dynamically queried using a number of orthogonal

search parameters, to quickly locate the tracks of

interest. The JBrowse team is working to integrate

these enhancements, and the Web-Apollo enhance-

ments mentioned above, back into the main JBrowse

code base.

In the longer term, tools to assist migration from

GBrowse to JBrowse are in development. Numerous

small enhancements are also planned to the user

interface, including (for example) display of

paired-end reads, display of the sequence of reads

(and highlighting of differences from the reference

genome) and quantitative y-axis labels for histograms

and WIG tracks.

Key points

� JBrowse is a web-based genome browser whose design and im-
plementation make it well suited to the challenges brought on
by the large sequencing data sets.

� JBrowse is unique among web-based genome browsers in that it
uses JavaScript to delegate a large amount of the workload to
the client machine (breaking large data sets into manageable
chunks). This enables browsing large data sets in a smooth, re-
sponsive environment.

FUNDING
National Institutes of Health/National Human

Genome Research Institute (R01-HG004483).

References
1. Skinner ME, Uzilov AV, Stein LD, et al. JBrowse: a

next-generation genome browser. Genome Res 2009;19:
1630–8.

2. FASTA format. http://en.wikipedia.org/wiki/FASTA (24
December 2011, date last accessed).

3. BED format. http://genome.ucsc.edu/FAQ/FAQformat.
html (24 December 2011, date last accessed).

4. GFF format. http://www.sanger.ac.uk/resources/software/
gff/ (24 December 2011, date last accessed).

5. Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics 2009;
25:2078–9.

6. WIG format. http://genome.ucsc.edu/goldenPath/help/
wiggle.html (24 December 2011, date last accessed).

7. Zhou P, Emmert D, Zhang P. Using Chado to store
genome annotation data. Curr Protoc Bioinformatics 2006;
Chapter 9:Unit 9.6.

8. Mungall CJ, Emmert DB. A Chado case study: an
ontology-based modular schema for representing
genome-associated biological information. Bioinformatics
2007;23:i337–46.

9. Stajich JE, Block D, Boulez K, et al. The Bioperl toolkit:
Perl modules for the life sciences. Genome Res 2002;12:
1611–8.

10. Lister R, O’Malley RC, Tonti-Filippini J, etal. Highly inte-
grated single-base resolution maps of the epigenome in
Arabidopsis. Cell 2008;133:523–36.

11. Down T, Piipari M, Hubbard T. Dalliance: interactive
genome viewing on the web. Bioinformatics 2011;27:889.

12. Perlin K, Fox D. Pad: an alternative approach to the com-
puter interface. Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques. Anaheim, CA,
USA: ACM, 1993;57–64.

176 Westesson et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/14/2/172/208227 by guest on 19 April 2024

http://en.wikipedia.org/wiki/FASTA
http://genome.ucsc.edu/FAQ/FAQformat.html
http://genome.ucsc.edu/FAQ/FAQformat.html
www.sanger.ac.uk/resources/software/gff/
www.sanger.ac.uk/resources/software/gff/
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/wiggle.html


13. Alekseyenko A, Lee C. Nested containment list (NCList): a
new algorithm for accelerating interval query of genome
alignment and interval databases. Bioinformatics 2007;23:
1386–93.

14. Kircher M. Lazy Acquisition. Munich, Germany: Siemens
AG, 2001, pp. 1–11.

15. Stein L, Mungall C, Shu S, et al. The generic genome
browser: a building block for a model organism system data-
base. Genome Res 2002;12:1599–610.

16. Kent WJ, Sugnet CW, Furey TS, etal. The human genome
browser at UCSC. Genome Res 2003;12:996–1006.

17. Stalker J, Gibbins B, Meid P, et al. The Ensembl web
site: Mechanics of a genome browser. Genome Res 2004;14:
951–5.

18. Jenkinson A, Albrecht M, Birney E, et al. Integrating bio-
logical data–the Distributed Annotation System. BMC
Bioinformatics 2008;9(Suppl 8):S3.

NGS data in JBrowse 177
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/14/2/172/208227 by guest on 19 April 2024


