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Abstract

Significant efforts have been made recently to improve data throughput and data quality in screening technologies related
to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content
screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi)
types of screening. Data generated by these screening technologies are subject to several environmental and procedural
systematic biases, which introduce errors into the hit identification process. We first review systematic biases typical of
HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for provid-
ing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess
the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe
main data normalization and correction techniques and introduce a general data preprocessing protocol. This protocol can
be recommended for academic and industrial researchers involved in the analysis of current or next-generation HTS data.

Key words: data correction methods; data normalization methods; high-content screening (HCS); high-throughput screening
(HTS); systematic error

Introduction

There has been a growing interest in the development of high-
throughput screening (HTS) technologies over the past few dec-
ades [1], largely because screening methods promoted by the
pharmaceutical industry have played a key role in drug

discovery. The increasing computing power and miniaturiza-
tion of screening equipment now allow for carrying out HTS
analyses even in small academic laboratories. The most popular
screening technologies used in drug design are high-content
screening (HCS) [2] and HTS [3]. Their different subcategories
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include small molecule [4], complementary DNA (cDNA) [5] and
RNA interference (RNAi) [6] types of screening. In a typical HCS
or HTS campaign, hundreds of terabytes of experimental data
concerning molecule activity, specificity and physiological and
toxicological properties can be generated. These data should be
processed using appropriate data mining and statistical
methods and protocols to identify promising drug candidates
(i.e. hits). One of the key challenges that needs to be answered
during the analysis of HCS and HTS data is the identification
and successful elimination of bias (i.e. systematic error) in the
measurements. In this review, we present the existing types of
bias common to all HTS technologies and discuss their negative
impact on the hit selection process. We underline the necessity
of randomization of screened samples and indicate the advan-
tages of using replicate measurements. We present the meth-
ods intended to detect systematic error and those designed to
correct the data affected by it. We argue that the latter methods
should be applied only when the presence of a specific type of
systematic error in the data has been confirmed by a suitable
statistical test [7]. Furthermore, we provide suggestions con-
cerning which data normalization and correction techniques
should be applied in various practical situations. Finally, we
present a broad-spectrum data preprocessing protocol that can
be used for the correction and analysis of screening data before
assay quality estimation and hit selection steps. This protocol
can also be used for detecting and removing bias in future HTS
technologies involving sequential screening of multiple plates.
To illustrate the results of our analyses, we examine publicly
available HTS and HCS data generated at the Harvard’s Medical
School (Figure 1), McGill University HTS laboratory (Figure 2),
McMaster University laboratory: Data screened for McMaster
Data Mining and Docking Competition (Figure 3) as well as
those provided by the largest public HTS/HCS database,
ChemBank, maintained by Harvard University’s Broad Institute
(Figure 4).

Screening technologies and related biases
HTS and HCS technologies and their subcategories

In this review, we focus on the two most widely used screening
technologies: HTS and HCS. In a typical HTS/HCS primary assay,
the selected library of chemical compounds is screened against
a specific biological target to measure the intensity of the
related inhibition or activation signal [8]. The size of the com-
pound library can vary from hundreds to millions of items.
Compounds are allocated across disposable microtiter plates of
different sizes, typically including 96, 384, or 1536 wells. Well
locations within a plate follow a rectangular matrix pattern.
Each compound is usually placed in a single well. A suitable bio-
logical target culture (e.g. cells or a bacterial enzyme) is then
added to each well of the plate. It is common to conduct unre-
plicated HTS experiments, although, as we show next, it is
much more appropriate to obtain at minimum duplicate meas-
urements. Processing the assay plates by HTS robotic equip-
ment consists of a number of experimental wet-lab steps,
including incubation, rising and reagent additions to the biolo-
gical culture of interest. Once the incubation period is over, the
plates are scanned to obtain measures of biological activity
characterizing the selected compounds. It is worth noting that
the obtained raw activity levels depend not only on putative
biological activity, but also on systematic and random errors
affecting the given screen. Data analysis steps, including statis-
tical procedures for data normalization and data correction,
should then be carried out to identify hits.

The increasing capacity of computer storage devices and the
improvements in automation have allowed the use of HTS tech-
nologies to achieve resolution at the cellular level [9]. This
related technology is called HCS. HCS is a screening method
with multiple readouts, which is based on microscopic imaging
from a cell-based assay [10]. HCS obtains detailed information
of cell structure by extracting multicolor fluorescence signals.
HCS has three advantages relative to other screening tech-
niques: (a) cell-based analysis achieves high physiological cor-
respondence, especially regarding drug screening; (b) single-cell
analysis captures the heterogeneity of cell populations as well
as the related individual response to treatments; (c) HCS gener-
ally has low false-positive and false-negative rates [11].
Nowadays, HCS technologies are commonly used in all areas of
contemporary drug discovery, including primary compound
screening, post-primary screening capable of supporting struc-
ture–activity relationships, early evaluation of ADME properties
and complex multivariate drug profiling [12]. The Mitocheck [13]
and ChemBank [14] databases are the main online resources
containing publicly available HCS data.

Different subcategories of HTS and HCS technologies exist,
depending on the target of interest. They involve altering
protein function using small molecules, increasing gene func-
tion using cDNA libraries and manipulating gene function using
RNAi.

Small molecules
A ‘small molecule’, which can be either natural or artificial, is
defined in pharmacology as a molecule associated with a
particular biopolymer—for example, a nucleic acid or a protein
[15]. There is currently a significant interest in extending efforts
to discover small molecules targeting proteins encoded in the
genomes of humans and pathogenic organisms [16].
Furthermore, small-molecule screening technologies have
applications in other areas of drug discovery, such as target
validation, assay development, secondary screening, pharma-
cological property assessment and lead optimization.
The combination of principles of molecular pharmacology with
modern high-throughput [4] and high-content [17] technologies
is critical for the success of these discoveries.

cDNA library
High-quality full-length cDNA libraries are essential for identifi-
cation and validation of novel drug targets in functional gen-
omic applications [18]. The discovery of reverse transcriptase
permitted the transformation of unstable mRNA molecules into
stable cDNA molecules. A comprehensive review of cDNA HCS
can be found in [19], and that of cDNA HTS in [5, 20].

RNA interference
In the past decade, RNAi has made great progress, evolving from
a biological phenomenon into an effective method of drug dis-
covery [21]. The two main advantages of RNAi screens compared
to classical genetic screens are the following: (a) sequences of all
identified genes are instantaneously identified and (b) lethal
mutations are simple to determine because mutant recovery is
not required [22]. The four types of RNAi reagents currently used
in cell-based HTS the following are: dsRNAs, siRNAs, shRNAs
and endoribonuclease-prepared siRNAs [23]. An important issue
in genome-wide RNAi investigation is to combine both experi-
mental and computational approaches to obtain high-quality
RNAi HTS assays and to overcome off-target effects [24–26]. A re-
cent review by Knapp and Kaderali focuses on the analysis of

Detecting and overcoming systematic bias in HTS | 975

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/16/6/974/225604 by guest on 09 April 2024

,
 in order
,
,
high-throughput screening
-
prior to
al
,
High-throughput screening (
)
high-content screening (
)
,
,
 along with
high-content screening (
)
that
al
: 
``
''
 &ndash; 
: 
,
complementary DNA (
)
: 
RNA interference (
)
to
 (esiRNAs)


RNAi HCS data and presents an approach for statistical process-
ing of high-content microscopic screens [27].

Systematic error in screening technologies
As with all biotechnologies, screening data are prone to both
‘random’ and ‘systematic errors’. Random error, which varies
among measured HTS compounds, lowers screening precision
and likewise affects false-positive and false-negative rates. Its
adverse effects can be greatly minimized by obtaining at least
duplicate measurements [28]. Systematic error (i.e. systematic
or spatial bias) can be defined as the systematic under- or
overestimation of measurements taken at the same plate or
assay location [29]. Systematic errors can be the cause of non-
specific phenotypes in specific well, row or column locations
and thus lead to higher false-positive and false-negative rates
[7, 30]. Its adverse effects can be minimized by the application
of data correction methods and study design procedures such
as randomization and blocking [8, 31].

Systematic error can be due to various technological and en-
vironmental factors, such as robotic failure, reader effect, pip-
ette malfunctioning or other liquid handling anomalies,
unintended differences in compound concentration related to
agent evaporation, variation in the incubation time or tempera-
ture difference, as well as lighting or air flow abnormalities pre-
sent over the course of the screening campaign [32, 33]. Thus,
bias causing systematic under– or overestimation of biological
activity measurements can cause some inactive compounds to
be incorrectly identified as hits (i.e. ‘false positives’) and some
active compounds to remain undetected (i.e. ‘false negatives’).
Systematic error can be well, row or column dependent. It can
affect compounds placed either to the same well, row or column
location over all plates of the assay (i.e. ‘assay-specific error’) or
those located in a particular row or column of a single plate (i.e.
‘plate-specific error’) [34].

Some specific positional effects appearing in HTS/HCS
screens as a consequence of bias are summarized below. One

often overlooked hurdle of HTS technologies is the ‘batch effect’
[35]. A batch effect, i.e. bias present in some continuous subsets
of the data and absent in others, occurs when some continuous
groups of plates are affected by laboratory conditions that vary
during the experiment. Although batch effects are hard to iden-
tify in low-dimensional assays, HTS technologies provide
enough data to identify and remove them [35]. The ‘edge effect’,
also called ‘border effect’, is another type of systematic error
that consists in systematic under- or overestimation of the
measurements located on the plate’s edges. Carralot et al. [36]
indicated that although most repetitive errors in RNAi HTS can
be generally controlled, some biases, such as edge effects,
cannot be easily corrected due to well-to-well discrepancies in-
herent in the spatial structure of the plate. The cause of this ef-
fect is often unclear but medium evaporation or uneven
treatment of the entire plate surface might be contributing fac-
tors [37]. Similarly to the plate-specific edge effect, a more gen-
eral assay-specific ‘row’, ‘column’ or ‘well location effects’ can
occur in both HTS and HCS screens when the data located in a
particular row, column or well location are systematically over-
or underestimated across all the plates of the assay. On the
other hand, a systematic ‘intra-image bias’, consisting of the
microscope-related errors, arises while capturing images in
HCS. One of the issues here is a nonuniformity of background
light intensity distribution, which is a slowly varying and sys-
tematic change of the spatial distribution of light in images.
Such an effect can add or subtract intensities at any pixel loca-
tion, thus affecting cell segmentation and florescence measure-
ments, which, in turn, affect data quantification and statistical
analysis [38].

Cell population context can also create systematic bias in
high-content cellular screens and thus significantly influence
results of HCS campaigns [39]. A method allowing for normaliz-
ing and scoring statistically microscopy-based RNAi screens has
been recently proposed [40]. This method exploits individual
cell information of hundreds of cells per knockdown. The

Figure 1. Systematic error in experimental HTS data (Harvard’s 164-plate assay [41]). Hit distribution surfaces for the m-2r hit selection threshold are shown for: (A) Raw

data; (B) B-score corrected data. Well, row and column positional effects are illustrated. The data are available at http://www.info2.uqam.ca/�makarenkov_v/HTS/

home.php/downloads/Harvard_164.zip. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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application of the proposed method and software [40] led to the
identification of new host dependency factors of the hepatitis C
and dengue viruses as well as to higher reproducibility of results
of the screening experiments.

Figure 1A illustrates the presence of edge effects (e.g. the
measurements in column 2 are systematically overestimated)
in the Harvard 164-plate assay [29, 41]. This assay consists of a
screen of compounds inhibiting the glycosyltransferase MurG
function of Escherichia coli. Here, the binding effect of MurG to
a fluorescent (fluorescein-labeled) analog of UDP-GlcNAc was
estimated. In this example, the threshold of l–2r was applied
to identify hits. The HTS Corrector software [42] was used to cal-
culate raw (Figure 1A) and B-score corrected (Figure 1B) hit dis-
tribution surfaces (i.e. a hit distribution surface gives the
number of hits per well location found over all plates of the
assay). The edge effect observed in column 2, and partially in
row V, in the raw data was successively eliminated by the
B-score procedure [3].

Similarly, image nonuniformity bias in HCS can be approxi-
mated and corrected by combining multiple images to generate
a single image with an expected random spatial distribution of
intensity values [38]. Such an approximation represents the
overall effect of bias on the imaging field estimated using an
image-averaging technique [43]. This positional bias can be usu-
ally detected by comparing the center of the image with its
edges. In most cases, there is at least a 2-fold increase in bright-
ness between center and edges. Figure 2 illustrates nonuniform-
ity bias present in a (96-well� 4-field) HCS plate of microtubule
polymerization status screened in the HCS laboratory of McGill
University.

Methods and results
Data randomization and use of controls

The primary aim of statistical practice consists in estimating ex-
perimental error, and in the case of systematic error, in reduc-
ing the negative effect of this error [44]. Experimental design
and statistical methods should be applied to accomplish these
objectives, although often underused in screening practice [31].

A fundamental approach for error reduction in experimental
design must include control and randomization techniques [45];
R.A. Fisher introduced the concept of randomization in which
experimental units are assigned to groups or treatment in a
manner that the probability of assignment to any particular
group or treatment is equal and unbiased [46]. The main advan-
tage of randomization in screening technologies is that
randomized experimental units can distribute the error in a
way that does not introduce discrepancies to the experiment
[31, 47, 48]. Thus, order of plate processing and compound
placements both within each plate and across replicate plates
of HTS/HCS assays should be randomized to reduce the impact
of systematic bias on the outcome of screening experiments.

Controls contain compounds with well-known biological
activity. Positive controls provide maximum possible activity
measurements and negative controls provide minimum pos-
sible activity measurements. Controls are used in control-
based normalization methods to render the screening data
comparable across different plates and to establish assay
background levels. Ideally, controls should be located ran-
domly within plates, but in practice, only the first and the last
columns of the plate are typically available for controls.
The related systematic edge effect can be reduced by alternat-
ing the positive and negative controls in the available wells,
so that they appear equally on each of the plate’s rows and
columns [8]. If the edge effect affects the control wells, it
will also affect all of the plate’s measurements because
they are normalized relative to the control activities.
Randomization of the position of compounds in the replicated
experiments is also important, but unfortunately, is often lim-
ited due to practical considerations when automatic spotting
approaches or some of the available statistical pipelines (e.g.
cellHTS in BioConductor [49]) not supporting control
randomization are used. RNAi controls generally exhibit more
inter-well variability than small molecule controls because
of variations in transfection efficiencies [50]. Cell-based
biological controls are especially problematic because cell
clumping or evaporation within different plate areas can lead
to different growth conditions and thus to position-related
bias [8, 36].

Figure 2. Non-smoothed foreground (non-uniformity bias) for images of a single (96-well�4-field) HCS plate of microtubule polymerization status generated in the

HCS laboratory of McGill University is shown. The data are available at http://nadon-mugqic.mcgill.ca. A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.
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Advantages of replicated measurements

Replicates offer the twin advantage of obtaining a greater preci-
sion of activity measurements and of estimating the measure-
ments variability [8]. The use of replicates allows one to reduce
the uncertainty associated to a single measurement (i.e. stand-
ard error of the mean), as indicated in Formula 1:

100� ð1� 1� ffiffi
n
p Þ%; (1)

where n is the number of replicates. Thus, carrying out two
replicated screens reduces imprecision by 29%, carrying out
three replicated screens reduces impression by further 13% and
carrying out four replicated screens reduces the impression by
additional 8% (i.e. eliminating in total 50% of imprecision asso-
ciated with a single measurement). Therefore, the replicates
make minimally and moderately active compounds simpler to
detect. Two types of replicates exist: technical and biological
ones [51]. Technical replicates, which address the variability of
the process, are repeated measurements of the same sample
that represent independent measures of the random noise
associated with equipment or protocols. Biological replicates,
which mainly address the variability of the population but also
reflect the variability of the process, are separate biological
samples that were treated using the same protocol. When the
sample population is unknown or has a higher variability, more
biological replicates are needed. Increasing the number of
technical replicates is important for a more variable technical
protocol or when new screening equipment is used. Generally,
biological variability is considerably greater than technical
variability, so it is to our advantage to commit resources to
sampling biologically relevant variables [51]. When planning for
replication, researchers have to determine the proportion of
variability induced by each experimental step to design statis-
tically independent replicates and distribute the capacity for
replication of the experiment across steps. Recognizing that
obtaining even the minimal requirement of two replicates can
be prohibitively expensive for some screens, Murie et al. [52]
introduced the single assay-wide variance experimental design,

which can generate statistical tests of biological activity based
on replication of only a small subset of plates.

Figure 3 illustrates the presence of the batch effect in the
‘McMaster Test dataset’ including the original and replicated sets
of plates [53]. The McMaster Test assay consisted of a sequence
of 625 plates, each of which was screened twice (8� 12-well
plates were used; the first and the last columns of each plate con-
tained controls—these columns are not displayed here; the re-
maining 80 wells contained different compounds meant to
inhibit the E. coli’s dihydrofolate reductase). The well (8, 9) (i.e.
well (H,10)—according to McMaster annotation; it is highlighted
by a green box in Figure 3) displays a hit only in the replicated
plates R1, R2, R3, R4, R5, R6, R7, R9 and R10, but not in the original
plates 1, 2, 3, 4, 5, 6, 7, 9 and 10. This batch effect is absent in the
replicated plate R8 and disappears starting from the replicated
plate R11. Three of the hit compounds: MAC-0120363 (plates 1
and R1), MAC-0121481 (plates 3 and R3) and MAC-0121668 (plates
5 and R5) were initially recognized as ‘Average Hits’ by the
McMaster competition organizers (the list of average hits con-
tained 96 compounds whose average measurements, computed
over the original and replicated screens, were lower than or equal
to 75% of the reference control average), but all of them were
then rejected as false positives when the dose-response relation-
ship analysis of the selected compounds was carried out [53]. It is
worth noting that only 96 of 50 000 screened compounds in this
assay were recognized as ‘Average Hits’.

Identification of hits

The identification of hits is the primary goal of any HTS/HCS
campaign. Some screeners select as screening positives a fixed
number, or a fixed percentage, of top-scoring compounds.
Compounds whose activity exceeds a fixed percent-of-control
threshold may also be considered as hits [8, 54]. A wide range of
more sophisticated hit identification techniques is available
nowadays. Birmingham and colleagues [50] reviewed the existing
hit selection methods, which can be classified as small-molecule
derived methods and RNAi-specific techniques. Small-molecule

Figure 3. Batch positional effect appearing in the ‘McMaster Test’ assay screened during the McMaster Data Mining and Docking Competition [53]. The first 24 plates

of the assay are shown (12 original and 12 replicates; the plate number is indicated on each plate; the replicates are indicated by the letter R). Each original plate is

followed by its replicate. Hits are shown in blue. Green boxes emphasize well (8, 9) on each plate (i.e. well H10, according to the McMaster annotation) where the batch

effect occurs. The data are available at http://www.info2.uqam.ca/�makarenkov_v/HTS/home.php/downloads/McMaster_1250.zip. A colour version of this figure is

available at BIB online: http://bib.oxfordjournals.org.
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derived methods include the following: selection of samples
whose screening activity exceeds a fixed threshold, which usu-
ally equals mean� 3 SD for inhibition assays and meanþ 3 SD
for activation assays [8]; a robust to outliers improvement of the
previous approach, using median instead of mean and median
absolute deviation (MAD) instead of standard deviations [55]; for
assays using replicated measurements, the difference in means
between replicates for each condition can be assessed with mul-
tiple t-tests [50]; finally, the random variance model, which uses
a weighted average of the compound-specific variance and an es-
timate of the typical variance of all of the compounds, has been
shown to be appropriate for small molecule HTS data with per-
formance superior to that of standard t-tests [56, 8]. RNAi-specific
techniques include the following: quartile-based hit identifica-
tion procedure, which establishes upper and lower hit selection
thresholds based on number of interquartile ranges (i.e. above or
below the first and third quartiles of the data) [57]; an accurate
strictly standardized mean difference method, which computes
the ratio between the difference of the means and the standard
deviation of the difference between positive and negative con-
trols [58]; and the redundant siRNA activity analysis method, de-
signed for screeners interested in information about multiple
RNAi reagents tested for each gene, which assigns P-values to all
reagents of a single gene [59].

Data normalization techniques that correct for overall
plate bias only

Data normalization in HTS and HCS consists in data transform-
ation allowing for data comparability across different plates of
the same assay [50]. The following simple types of data normal-
ization, which do not correct for spatial systematic biases, are
commonly used in screening technologies.

‘Control Normalization’ is a control-based normalization
method using the measurements of both positive and negative
controls (Formula 2):

x̂ij ¼
xij � lneg

lpos � lneg
(2)

where xij is the raw measurement of the compound located in
well (i, j), x̂ij is the normalized value of the raw measurement xij,
lpos is the mean of positive controls of the plate and lneg is the
mean of negative controls of the plate.

‘Median percent inhibition’ normalization is carried out as
follows (Formula 3):

x̂ij ¼ 100� 1�
xij

med

� �
(3)

where med is the median of all measurements of the plate.
‘Z-score’ normalization is defined as follows (Formula 4):

x̂ij ¼
xij � l

r
(4)

where l and r are, respectively, the mean and the standard de-
viation of all measurements of the plate.

‘Robust Z-score’ normalization can account for different
scale and variability effects across HTS plates. It is less likely to
produce biased scores because of outlying values of highly ac-
tive compounds. Robust Z-score normalization is similar to Z-
score except that the median is used instead of the mean and
the median absolute deviation (MAD) is considered instead of

the standard deviation to obtain the outlier resistant dispersion
estimates (Formula 5):

x̂ij ¼
xij �med

MAD
(5)

where MAD is the median absolute deviation of measurements
of the plate.

Systematic error detection tests

Several error correction methods and software have been re-
cently developed to minimize the impact of systematic bias [7].
These methods and software should, however, be used with
caution. Makarenkov et al. [33] demonstrated that systematic
error correction methods can introduce systematic bias when
applied on error-free HTS data. The introduced bias may be less
important as in the case of the well correction procedure [33] or
important as in the case of the B-score method [3]. Thus, the
presence or absence of systematic bias in raw HTS data must be
first confirmed by the appropriate statistical tests [7, 60–62].
Systematic error detection tests that work well with screening
data are summarized below.

Welch’s t-test
This test is based on the classical two-sample Welch’s t-test for
the case of samples with various sizes and unequal variances
[60]. Two variants of this test can be considered in the frame-
work of HTS/HCS analysis. The first variant concerns its appli-
cation to each row and each column of every plate of the assay.
The second variant concerns its application to the assay’s hit
distribution surface. The measurements of the given plate (or of
the hit distribution surface) are subdivided into two samples:
the first sample contains the measurements of the tested row
or column, while the second sample includes the remaining
plate’s measurements. The null hypothesis, H0, here is that the
considered row or column does not contain systematic error.
For the two considered samples, S1 with N1 elements and S2

with N2 elements, the two sample variances, s2
1 and s2

2, are first
calculated. Welch’s t-test statistic can then be computed using
Formula 6:

t ¼ l1 � l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1
N1
þ s2

2
N2

q ; (6)

where l1 is the mean of sample S1 and l2 is the mean of sample
S2. The t-test value is then compared with the critical value cor-
responding to the chosen statistical significance level a to de-
cide whether H0 should be rejected. Welch’s t-test is usually
applied when the data are normally distributed but the sample
variances may differ. However, for moderately large samples
and a one-tailed test, this statistic is relatively robust to viola-
tions of the normality assumption.

v2 goodness-of-fit test
This test can be used to establish the presence or absence of sys-
tematic error in a hit distribution surface [7]. The null hypothesis
H0 here is the same as in Welch’s t-test. The rejection region of H0

is Pðv2 > CaÞ > a, where Ca is the v2 distribution critical value, cor-
responding to the chosen parameter a and the number of degrees
of freedom. For a hit distribution surface with NR rows and NC

columns, one can test the presence of systematic error in a given
row r by calculating the v2

r statistic (Formula 7):

Detecting and overcoming systematic bias in HTS | 979

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/16/6/974/225604 by guest on 09 April 2024

standard deviations
standard deviations
 (RVM)
,
 (SSMD)
,
 (RSA)
p
which
 (MPI)
very 
: 
'
iereasle
'
to
in order 
 or not
'
: 
'


v2
r ¼

XNC

j¼1

ðxrj � EÞ2

E
(7)

where xrj is the jth value in row r, E is the hits count of the whole
hit distribution surface divided by the number of wells (NR x NC).
The number of degrees of freedom here is NR � 1.

In the same way, the columns of the hit distribution surface
affected by systematic error can be tested by computing the test
statistic v2

c (Formula 8):

v2
c ¼

XNR

i¼1

ðxic � EÞ2

E
(8)

The number of degrees of freedom here is NC� 1.
Systematic error affecting a particular well location (i, j) and

appearing along all plates of the assay can be also identified by
computing the v2 statistic [7] (Formula 9):

v2 ¼
XNR

i¼1

XNC

j¼1

ðxij � EÞ2

E
: (9)

The number of degrees of freedom here is NR �NC � 1. The
following main assumptions should be met for this test: (i) the
observations are independent of each other and (ii) the expected
hits count in each well location of the hit distribution surface
should be at least 5.

Kolmogorov–Smirnov test preceded by Discrete Fourier Transform
This method consists of Discrete Fourier Transform (DFT) [63]
signal analysis method followed by the Kolmogorov–Smirnov
(KS) test [64]. It is included in some commercial software in-
tended to detect systematic error in screening data (e.g. in the
‘Array Validator’ program described in [65]). The KS test is a
non-parametric test having the advantage of making no as-
sumption about the distribution of data.

As recently has been shown, Welch’s t-test usually outper-
forms the v2 goodness-of-fit test and the KS test preceded by
DFT in the context of HTS analysis [7]. A comprehensive simula-
tion study involving artificially generated HTS data was carried
out to compare the three aforementioned tests in a variety of
practical situations. The success rate of the t-test was usually
above 90%, regardless the plate size, the type and the magni-
tude of systematic error, whereas the values of Cohen’s kappa
coefficient for this test suggested its superior performance in
the case of large plates and high level of systematic bias [7].

Mann–Whitney–Wilcoxon test
This test verifies whether two samples of measurements are
identical. First, a suitable Type I error probability, a, is chosen
for the test and the data in two samples of interest, X1 and X2,
are ranked. The Mann–Whitney–Wilcoxon (MWW) test [61] is
based on Formula 10:

z ¼
W1 � N1� N1þN2þ1ð Þ

2 þ C
rW

(10)

where N1 and N2 are the sizes of samples X1 and X2, and

W1 ¼
PN1

k¼1 Rank X1kð Þ is the sum of the ranks of the first sample
measurements. The correction factor, C, equals 0.5, if the rest of
the numerator of z is negative, or equals �0.5, otherwise. The
standard deviation, rW , is determined using Formula 11:

rW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 � N2 � N1 þN2 þ 1ð Þ

12

r
(11)

As this is a non-parametric test, it does not make assump-
tions about the underlying data distribution.

Rank products test
Consider the expression levels of n genes for k1 independent
replicates in sample X1, and k2 independent replicates in sample
X2. Let Xijm be the expression level of the ith gene in the jth repli-
cate of the mth sample, where 1�i�n; 1�j�km, 1�m�2: By rank-
ing the expression levels X1jm, X2jm, . . . , Xnjm within each
replicate j, we form the vectors Rijm ¼ rank(Xijm), where 1�Rijm�n
and 1�m�2: The suitable two-sample version of Breitling’s Rank
products statistic, RP, for the ith gene can then be calculated by
using Formula 12 [62, 66]:

RPi ¼
Yk1

j¼1

Rij1

0
@

1
A

1=k1
, Yk2

j¼1

Rij2

0
@

1
A

1=k2

(12)

Genes associated with sufficiently large or small RPi values
are marked for further consideration. A few assumptions for
this non-parametric test are the following [66]: (i) relevant ex-
pression changes affect only a minority of genes, (ii) measure-
ments are independent between replicated plates (or screens);
(iii) most changes are independent of each other and (iv) meas-
urement variance is about equal for all genes. The MWW and
Rank products tests have been successively applied in the RNAi
screening [67, 68].

To estimate the magnitude of systematic bias in experimen-
tal HTS data, we carried out a series of tests using the data ex-
tracted from the largest public HTS/HCS database, ChemBank
[14]. Figure 4A reports the average row and column systematic
error rates in raw HTS measurements obtained from 41 HTS
assays (735 plates in total) aimed at the inhibition of the E. coli
bacterium. In this analysis, we considered all HTS assays
related to the E. coli inhibition, which were available in
ChemBank as of April 2014. The presented results were obtained
by using Welch’s t-test (Equation 6) with different values of the
parameter a¼ 0.01, 0.025, 0.05, 0.075 and 0.1. The null hypoth-
esis here was that the considered row or column did not contain
any systematic bias. Figure 4B illustrates the average hit distri-
bution surface error rates for raw data. The presence of system-
atic errors in an assay can be determined through the analysis
of its hit distribution surface depicting the total hit counts per
well location over all plates of the assay [33]. Thus, we esti-
mated over all assay’s plates the number of measurements with
values lower than the m-cr threshold, where the mean value m
and the standard deviation r were computed separately for
each plate; the constant c was gradually set to 2.5, 3.0 and 3.5 to
account for the most popular hit selection thresholds. Here also,
Welch’s t-test was used to determine the presence or absence of
systematic error. Similarly, Figure 4C presents the average row
and column error rates for the background-subtracted measure-
ments for the same 41 HTS assays (background-subtracted data
were also extracted from ChemBank), and Figure 4D shows the
average hit distribution surface error rates for the background-
subtracted data. The Matlab 8.2 package [69] was used in our
computations. The presented graphics suggest that the row and
column systematic bias is common to experimental HTS assays
(i.e. plate-specific error)—at least 30% of rows and columns in
the raw data and 20% of rows and columns in the background-
subtracted data were affected by systematic bias (Figure 4A and
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C). Moreover, systematic error is even more visible when
analyzing hit distribution surfaces (i.e. assay-specific error)—at
least 50% of raw hit distribution surfaces and 65% of back-
ground-subtracted hit distribution surfaces were affected by
systematic error (Figure 4B and D).

Data normalization techniques that correct for plate-
specific and assay-specific spatial systematic biases

This section describes the statistical methods that are used for
minimizing plate-specific and assay-specific (i.e. across-plate
well-location bias) spatial systematic biases in screening tech-
nologies. Most of these methods allow the correction of overall
plate bias as well.

R-scores
This plate-specific correction method [70] relies on Formula 13:

xijp ¼ lp þ Rip þ Cjp þ rijp; (13)

where xijp is the compound measurement in row i and column j
of plate p, lp is the mean of plate p, Rip is the row bias affecting
row i of plate p, Cjp is the column bias affecting column j of plate
p and rijp is the residual in well (i, j) of plate p. These parameters
can be estimated using, for example, the rlm function from the
MASS package of the R language [71]. The R-scores are the mod-
el’s residuals rescaled by dividing them by the standard devi-
ation estimate of the regression function.

B-scores
This method corrects the raw plate measurements by iteratively
eliminating possible row and column positional biases [3]. The
statistical model for the raw measurement xijp is similar to
Formula 13. The B-scores method relies on a two-way median
polish (MP) procedure [72] carried out separately for each plate
of the assay to obtain the estimates of xijp, lp, Rip and Cjp. The re-
sidual rijp of the measurement in well (i, j) is then calculated as
the difference between the raw measurement xijp and its fitted
value ~xijp: rijp¼ xijp� ~xijp. Finally, the obtained residuals are div-
ided by the MAD of plate p (Formula 14):

B-score ¼
rijp

MADp
;where MADp ¼ medfjrijp �medðrijpÞjg (14)

A variant of the B-scores method used in HCS [73] considers
the mean true activity value, lijp, in well (i, j) in Formula (13), in-
stead of lp.

Well correction
This assay-specific correction method proceeds by data normal-
ization along the well locations of the assay [33, 42]. At first,
Z-score normalization (Formula 4) is performed within each
plate of the assay. The following two steps are then carried out.
First, a linear least-square approximation is performed for
the measurements of each well location of the assay (this well-
specific approximation is done across all plates of the assay).
Second, Z-score normalization of the fitted measurements

Figure 4. Proportion of rows and columns affected by systematic bias in 41 experimental HTS assays (735 plates in total; control wells were ignored) aiming at the inhib-

ition of the E. coli. Experimental data were extracted from the Harvard University HTS databank (i.e. ChemBank [14]). Here we show: (A) Overall row and column error

rate for raw data; (B) hit distribution surface error rates for raw data; (C) overall row and column error rate for background-subtracted data; (D) hit distribution error

rate for background subtracted data. The following hit selection thresholds were used to identify hits and establish hit distribution surfaces of the assays: m-2.5r (^),

m-3r (D) and m-3.5r (*), where m and r are, respectively, the mean and SD of the plate’s measurements.
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obtained from regression is carried out independently for each
well location of the assay (still across all plates of the assay).

Robust well correction
This is another assay-specific data correction procedure. Each
plate is normalized using robust Z-scores (Formula 5) and then
the entire set of plates is ordered by date of processing and a
robust regression line is fit to the data. This fitting is carried out
independently for each well location across all plates of the
assay as in the well correction method. The obtained normal-
ized residuals are considered as final corrected scores [31].

Diffusion model
This model is designed to eliminate the edge effect in the HTS
RNAi screens [36]. The process-specific diffusion process is
described by the following parabolic differential equation
(Formula 15):

@~b i; j; tð Þ
@t

¼ c� D� ~b i; j; tð Þ (15)

where ~b i; j; tð Þ is the evaluated spatiotemporal diffusion field in
well (i, j) at time t (i.e. evaluated systematic bias), c is the diffu-
sion coefficient and D is the Laplacian operator. The following
boundary conditions are considered (Formula 16):

~b i; j; tð Þ ¼ U1; 8 i; jð Þ 2 Z2 n C;

~b i; j; t ¼ 0ð Þ ¼ U0; 8 i; jð Þ 2 C;

(
(16)

where U0 and U1 are the model’s positive parameters; the model
also assumes that:

• at the initial time t¼ 0 of the dispensing, there is no edge effect

on the given plate;
• the effect strength depends on a physical difference between the

inside parameter C and outside parameter Z2 n C of the given

plate.

Loess correction method
The loess error correction method evaluates the plate’s row and
column effects by fitting a loess curve to each row and column
of the given plate [74, 75]. The loess correction is defined by
Formula 17:

~xij ¼ xij �
ri

rij

 !
�

cj

cij

 !
(17)

where xij is the raw measurement in well (i, j), ~xij is the adjusted
measurement in this well, ri is the mean of the fitted loess curve
for row i, cj is the mean of the fitted loess curve for column j, rij

is the value of the fitted row loess curve for row i and column j
and cij is the value of the fitted column loess curve for row i and
column j.

Median filter
The median filter method [76] adjusts the intensity value of the
given well (i, j) using the median of the intensity values of the
nearby wells. First, a row median filter, whose filter window in-
cludes the wells located on the same row i, within k wells of
well (i, j), is carried out. Second, a standard median filter proced-
ure, its filter window includes the wells located within l wells of
well (i, j), is applied. The constants k and l usually equal 3 for the

1536-well plates, and 1 and 2 for the 96-well plates. The method
relies on Formula 18 to compute the adjusted measurements:

~xij ¼ xij �
medp

medwij

 !
; (18)

where medp is the median intensity of plate p and medwij is
the median intensity of wells included in the filter window of
well (i, j).

SPAtial and Well Normalization
This two-step method gradually applies a trimmed mean polish
method on individual plates to minimize row and column sys-
tematic effects [77]. The considered statistical model relies on
Formula 13. First, a well normalization step is carried out to de-
termine spatial bias template, SBTij, which is the median of the
scores at well location (i, j) computed over all plates of the assay.
The spatial bias template scores are subtracted from the scores
obtained by the median polish procedure: r̂ ijp ¼ rijp � SBTij:

Finally, the resulting scores are rescaled by dividing them by
the MAD of the plate. Thus, SPAtial and Well Normalization
(SPAWN) corrects for both plate-specific and assay-specific
biases.

Matrix error amendment and partial mean polish
These algebraic methods are designed to modify only those
rows and columns of the given plate that are affected by sys-
tematic bias [34]. Matrix error amendment (MEA) and partial
mean polish (PMP) methods rely on prior information concern-
ing the presence and absence of systematic error in the rows
and columns of the given plate. Such information can be ob-
tained using a specific version of Welch’s t-test or the v2 good-
ness-of-fit test (see previous section). One of the main
advantages of the PMP method over MP and B-scores [3] is that
PMP does not reduce the original data to residuals, keeping the
corrected measurements on the same scale with the original
ones.

Table 1 reports the discussed data normalization techniques
recommended for the analysis of HTS and HCS data along with
the underlying assumptions regarding their practical
application.

Various plots that use robust statistical indices have been
also suggested for detecting shifts and trends across time in
large screening campaigns [3]. Systematic bias within plates can
be detected with visualization methods such as two-dimen-
sional heat maps and three-dimensional wire plots, although
typical plate-specific bias patterns are more easily detected
with autocorrelation plots that show the degree of correspond-
ence between wells at various ‘lags’ (e.g. adjacent or separated
by one well) [31]. Finally and somewhat counterintuitively,
screens with few active compounds should show low correl-
ations between replicate plates; for these screens, scatterplots
that show high correspondence between replicate plates indi-
cate across-plate well-specific bias rather than good biological
reproducibility [31].

Discussion and conclusion

We reviewed current knowledge on systematic bias affecting
raw data in HTS and HCS technologies. First, we discussed the
causes of spatial systematic bias and its impact on the selection
of correct hits in HTS and HCS experiments. The main steps of
HTS and HCS screening protocols were presented along with
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the subcategories of screening technologies, including small
molecule, cDNA and RNAi screens. Positional bias effects char-
acteristic of screening technologies, comprising batch effects,
edge effects and well location effects, were discussed in detail.
We highlighted that randomization of experimental units and
use of replicates can significantly reduce the magnitude of sys-
tematic error. Data normalization techniques that correct for
overall plate bias were presented, followed by the description of
systematic error detection tests specific to screening technolo-
gies. Finally, we discussed error correction methods, indicating
under which assumptions and for which kind of spatial bias
each of them should be used. In particular, we underlined the
distinction between the plate-specific and assay-specific sys-
tematic biases and pointed out that data correction methods
should be applied only if the presence of systematic bias was
confirmed by the appropriate statistical tests. Otherwise, an un-
wanted bias can be introduced into error-free data.

To summarize our presentation, we describe here a general
data preprocessing and correction protocol (Figure 5), which
could be used as a guide by academic and industrial researchers

involved in the analysis of current or next-generation screening
data. The first required step concerns general design of a
screening campaign. The compound locations within each
plate, as well as over all plates of the assays, should be random-
ized to reduce the impact of systematic bias on the outcome of
screening experiments. Moreover, whenever the campaign
funding allows, several replicates of the compound library
should be screened. Replicated screens provide both a greater
precision of activity measurements and the ability to assess
measurement variability [8]. Once the assay measurements
have been established, the appropriate data normalization pro-
cedure should be carried out to ensure the data comparability
over different plates and screening conditions. Afterwards, sys-
tematic error detection tests should be carried out to confirm
the presence or absence of systematic error in raw data (e.g.
Welch’s t-test or v2 goodness-of-fit test). In particular, these
tests can be applied to identify the following: (i) positional ef-
fects of systematic error, including row, column and well loca-
tion biases; (ii) error specificity, including plate, batch and
assay-specific biases; (iii) type of systematic error, including

Table 1. Data normalization methods recommended for the analysis of HTS and HCS data, and classified according to the context in which
they should be applied

Method Overall
plate bias
correction

Spatial
systematic
bias correction

Removes
plate-specific
spatial bias

Removes
assay-specific
spatial bias

Data randomization
assumption

Software available

Control
normalization

Yes No No No Control placements are
preferably randomized
within plates

In many software; readily im-
plemented in MS Excel and R

Median percent
inhibition

Yes No No No No any In many software; readily im-
plemented in MS Excel and R

Z-score Yes No No No No any In many software; readily im-
plemented in MS Excel and R

Robust Z-score Yes No No No No any SIGHTS [31]
R-score Yes Yes Yes Yes (RW function

in SIGHTS)
Samples randomized
within plates

rlm (MASS package) function in
R, SIGHTS

B-score Yes Yes Yes No Samples randomized
within plates

BioConductor (cellHTS,
RNAither) [49], HTS-Corrector
[42], HCS-Analyzer [78], HTS-
Helper [34]

Well correction Yes Yes No Yes Samples randomized across
different well locations of
the assay

HTS-Corrector, HTS-Helper,
SIGHTS

Robust well
correction

Yes Yes No Yes Samples randomized across
different well locations of
the assay

SIGHTS

Diffusion model
(HCS)

Yes Yes Yes No Samples randomized
within plates

HCS-Analyzer

Loess correction Yes Yes Yes No Samples randomized
within plates

SIGHTS, BioConductor
(RNAither)

Median filter Yes Yes Yes No Samples randomized
within plates

SIGHTS, HMF [76]

SPAWN Yes Yes Yes Yes (SPAWNW
function
in SIGHTS)

Samples randomized
within plates and across
different well locations

SIGHTS

MEA No Yes Yes No Samples randomized
within plates

HTS-Helper

PMP No Yes Yes No Samples randomized
within plates

HTS-Helper

IQEM (HCS) No Yes Yes No Samples randomized
within plates

IQEM code for MATLAB [38]

Note. The available software implementations are also indicated.

Detecting and overcoming systematic bias in HTS | 983

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/16/6/974/225604 by guest on 09 April 2024

which
In order 
-
in order 
,
1
2
3


additive (e.g. Robust well correction, SPAWN or PMP methods
can be applied to eliminate this type of bias) and multiplicative
(e.g. diffusion model can be applied to eliminate this type of
bias) biases. If systematic error was not detected in the data,
then no correction method needs to be applied to them to avoid
the risk of introduction of additional biases [7]. Otherwise, the
appropriate error correction method, preferably including a suc-
cess of control step, should be carried out. Once systematic bias
is minimized, assay quality estimation and hit identification
steps can be carried out. It is worth noting that the plate-
specific correction methods (e.g. PMP) can sometimes be applied
in combination with the assay-specific correction methods (e.g.

Robust well correction). First, Welch’s t-test can be carried out
independently for each individual plate of the assay to detect
the plate’s rows and columns affected by systematic bias. The
measurements affected by bias can be subsequently corrected
by using the PMP method, which keeps the corrected data on
the same scale with the original ones. Second, Welch’s t-test
can be performed over the hit distribution surface of the entire
assay. If the test identifies the presence of systematic bias on
the surface, the Robust well correction procedure can be carried
out to remove the assay-specific bias. An alternative solution to
this problem could be provided by the methods that correct for
both plate-specific and assay-specific biases (e.g. SPAWN).

Figure 5. Recommended data preprocessing and correction protocol to be performed before the hit identification step in HTS and HCS. A colour version of this figure is

available at BIB online: http://bib.oxfordjournals.org.
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Key Points

• We reviewed current knowledge on systematic bias af-

fecting experimental HTS and HCS data.
• Study design issues and the way in which data are

generated are crucial for providing unbiased screening
results. Unfortunately, these key steps are often
ignored by HTS practitioners.

• Data correction methods should be applied only if the
presence of systematic error has been confirmed by
the appropriate statistical tests.

• Discussed sources of systematic bias and presented
statistical methods and software intended to correct
experimental screening data provide a unifying frame-
work when considering new screening technologies.

• We presented a general data preprocessing and cor-
rection protocol that can be used as a guide by
academic and industrial researchers involved in the
analysis of current or next-generation screening data.

References
1. Shelat AA, Guy RK. The interdependence between screening

methods and screening libraries. Curr Opin Chem Biol 2007;11:
244–51.

2. Giuliano KA, Haskins JR, Taylor DL. Advances in high content
screening for drug discovery. Assay Drug Dev Technol 2003;1:565–77.

3. Brideau C, Gunter B, Pikounis W, et al. Improved statistical
methods for hit selection in HTS. J Biomol Screen 2003;8:634–47.

4. Inglese J, Shamu CE, Guy RK. Reporting data from high-
throughput screening of small-molecule libraries. Nat Chem
Biol 2007;3:438–41.

5. Chiao E, Leonard J, Dickinson K, et al. High-throughput func-
tional screen of mouse gastrula cDNA libraries reveals new
components of endoderm and mesoderm specification.
Genome Res, 2005;15:44–53.

6. Auer PL, Doerge RW. Statistical design and analysis of RNA
sequencing data. Genetics 2010;185:405–16.

7. Dragiev P, Nadon R, Makarenkov V. Systematic error detec-
tion in experimental high-throughput screening. BMC
Bioinformatics 2011;12:25.

8. Malo N, Hanley JA, Cerquozzi S, et al. Statistical practice in
high-throughput screening data analysis. Nat Biotechnol 2006;
24:167–75.

9. Noah JW. New developments and emerging trends in high-
throughput screening methods for lead compound identifica-
tion. Int J High Throughput Screen 2010;1:141–9.

10.Smellie A, Wilson CJ, Ng SC. Visualization and interpretation of
high content screening data. J Chem Inf Model 2006;46:201–7.

11.Kozak K, Agrawal A, Machuy N, et al. Data mining techniques
in high content screening: a survey. J Comput Sci Syst Biol 2009;
2:219–39.

12.Zanella F, Lorens JB, Link W. High content screening: seeing is
believing. Trends Biotechnol 2010;28:237–45.

13.Mitocheck HCS database, 2009. http://mitocheck.org.

14.ChemBank HTS/HCS database. http://chembank.broadinsti-
tute.org.

15.Cram101. E-Study Guide for: Polymers: Chemistry and Physics of
Modern Materials: Chemistry, Materials sciences [Kindle edition],
CRAM101, Ventura, CA, 2012.

16.Lazo JS, Brady LS, Dingledine R. Building a pharmacological
lexicon: small molecule discovery in academia. Mol Pharmacol
2007;72:1–7.

17.Korn K, Krausz E. Cell-based high-content screening of small-
molecule libraries. Curr Opin Chem Biol 2007;11:503–10.

18.Brown JC, Song C. High quality cDNA libraries for discovery
and validation of novel drug targets. Expert Opin Ther Targets
2000;4:113–20.

19.Buchser W, Collins M, Garyantes T, et al. Assay development
guidelines for image-based high content screening, high con-
tent analysis and high content imaging. In Assay Guidance
Manual. [Internet], Bethesda (MD): Eli Lilly & Company and
the National Center for Advancing Translational Sciences; 2012.
Last Update: September 22, 2014. Available from: http://
www.ncbi.nlm.nih.gov/books/NBK100913/.

20.Honma K, Ochiya T, Nagahara S, et al. Atelocollagen-based
gene transfer in cells allows high-throughput screening of
gene functions. Biochem Biophys Res Commun 2001;289:1075–81.

21.Sharma S, Rao A. RNAi screening: tips and techniques. Nat
Immunol 2009;10:799–804.

22.Boutros M, Ahringer J. The art and design of genetic screens:
RNA interference. Nat Rev Genet 2008;9:554–66.

23.Mohr S, Bakal C, Perrimon N. Genomic screening with RNAi:
results and challenges. Annu Rev Biochem 2010;79:37–64.

24.Zhang XD, Espeseth AS, Johnson EN, et al. Integrating experi-
mental and analytic approaches to improve data quality in
genome-wide RNAi screens. J Biomol Screen 2008;13:378–89.

25.Buehler E, Khan AA, Marine S, et al. siRNA off-target effects in
genome-wide screens identify signaling pathway members.
Sci Rep 2012;2:428.

26.Amberkar S, Kiani NA, Bartenschlager R, et al. High-through-
put RNA interference screens integrative analysis: towards a
comprehensive understanding of the virus-host interplay.
World J Virol 2013;2:18–31.

27.Knapp B, Kaderali L. Statistical Analysis and Processing of
Cellular Assays. Technische Universität Dresden, Germany,
iConcept Press, 2012.

28.Malo N, Hanley JA, Carlile G, et al. Experimental design and
statistical methods for improved hit detection in high-
throughput screening. J Biomol Screen 2010;15:990–1000.

29.Kevorkov D, Makarenkov V. Statistical analysis of systematic er-
rors in high-throughput screening. J Biomol Screen 2005;10:557–67.

30.Ramadan N, Flockhart I, Booker M, et al. Design and imple-
mentation of high-throughput RNAi screens in cultured
Drosophila cells. Nat Protoc 2007;2:2245–64.

31.Murie C, Barette C, Lafanechère L, et al. Improving detection
of rare biological events in high-throughput screens. J Biomol
Screen 2015;20(2):230–241.

32.Heyse S. Comprehensive analysis of high-throughput screen-
ing data. In: International Symposium on Biomedical Optics. Proc.
SPIE, 2002;4626:535–47. San Jose, CA, International Society for
Optics and Photonics.

33.Makarenkov V, Zentilli P, Kevorkov D, et al. An efficient
method for the detection and elimination of systematic error
in high-throughput screening. Bioinformatics 2007;23:1648–57.

34.Dragiev P, Nadon R, Makarenkov V. Two effective methods
for correcting experimental high-throughput screening data.
Bioinformatics 2012;28:1775–82.

Detecting and overcoming systematic bias in HTS | 985

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/16/6/974/225604 by guest on 09 April 2024

[
Grant 
Number 
] 
[
Grant 
Number 
].
-
which
http://mitocheck.org
http://chembank.broadinstitute.org
http://chembank.broadinstitute.org
http://www.ncbi.nlm.nih.gov/books/NBK100913/
http://www.ncbi.nlm.nih.gov/books/NBK100913/


35.Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread
and critical impact of batch effects in high-throughput data.
Nat Rev Genet 2010;11:733–9.

36.Carralot J-P, Ogier A, Boese A, et al. A novel specific edge effect
correction method for RNA interference screenings.
Bioinformatics 2012;28:261–8.

37.Armknecht S, Boutros M, Kiger A, et al. High-throughput RNA
interference screens in drosophila tissue culture cells.
Methods Enzymol 2005;392:55–73.

38.Lo E, Soleilhac E, Martinez A, et al. Intensity quantile estimation
and mapping—a novel algorithm for the correction of image
non-uniformity bias in HCS data. Bioinformatics 2012;28:2632–9.
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