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Abstract

Determining the residues that are important for the molecular activity of a protein is a topic of broad interest in biomedicine
and biotechnology. This knowledge can help understanding the protein’s molecular mechanism as well as to fine-tune its
natural function eventually with biotechnological or therapeutic implications. Some of the protein residues are essential
for the function common to all members of a family of proteins, while others explain the particular specificities of certain
subfamilies (like binding on different substrates or cofactors and distinct binding affinities). Owing to the difficulty in
experimentally determining them, a number of computational methods were developed to detect these functional residues,
generally known as ‘specificity-determining positions’ (or SDPs), from a collection of homologous protein sequences. These
methods are mature enough for being routinely used by molecular biologists in directing experiments aimed at getting
insight into the functional specificity of a family of proteins and eventually modifying it. In this review, we summarize
some of the recent discoveries achieved through SDP computational identification in a number of relevant protein families,
as well as the main approaches and software tools available to perform this type of analysis.
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Introduction

Obtaining the amino-acid sequence of a protein is relatively
easy, compared with the difficulty of obtaining its three-
dimensional (3D) structure or other experimental functional in-
formation. This is leading to an exponential increase in the
number of protein sequences stored in public databases, which
is orders or magnitude higher than the number of proteins
whose structures are known or for which we have functional
clues. Recent improvements in de novo sequencing and re-
sequencing technologies [1, 2] are boosting this trend.

One way of taking advantage of this massive amount of data
is to use sequence comparison methods to collect and compare
homologous proteins (those sharing a common ancestor). Such

a comparative study of the members of a group of homologous
proteins (also termed ‘superfamily’) provides a lot of informa-
tion on the functional and structural features of its members
[3]). It is well established that homologous proteins share the
same global 3D structure and many functional aspects (in-
herited from the common ancestor). Consequently, sequence
comparison is most commonly used to predict the 3D structure
and function of proteins, simply transferring these features
from the homologous proteins for which they are known.

Apart from these global structural and functional analyses,
protein sequence comparison allows us to study the pattern of
conservation of individual residues. The first step to perform
such a comparative study at the residue level is to generate a
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Figure 1. Representation of an idealized MSA with 12 homologous proteins, which can be grouped in three subfamilies with different functional specificities: they bind

substrates of the same class but with some chemical differences (additionally s

ubfamily C binds another protein). Besides the MSA, a representation of the (similar)

structure of one member of each subfamily is shown. Three positions with different conservation patterns are highlighted in the alignment: full conservation (red, left
highlighted column) and two types of subfamily-specific conservation (SDPs) (blue and green, middle and right highlighted columns). The mapping of these three types
of positions in a generic structure of a member of the family is shown on the bottom right. Conservation owing to structural reasons is not shown here for clarity. For a
member of family A, two mutations were designed (*): one involving a fully conserved position (red, top), which probably inactivates the protein, and another in an SDP
position (blue, middle), which can lead to changed specificity. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

multiple alignment of the sequences of a group of homologous
proteins (‘multiple sequence alignment’, MSA). In this align-
ment, evolutionary equivalent residues are stacked together
(in the same column in the most common representation)
(Figure 1). We can think of the MSA as a representation of the re-
sults of an ‘experiment’ in which evolution performed many
trial/error cycles trying different amino-acid types at different
positions, and keeping those ‘mutations’, resulting in functional
proteins. Thus, a column in a MSA (termed ‘position’ in this
context) can be regarded as a representation of the mutations
‘allowed’ by evolution in the corresponding residues of the
homologous proteins. Consequently the mutational patterns of
the positions in a MSA provide important functional information
on the corresponding residues [4]. For example, a position with
an invariable amino acid (‘conserved position’, Figure 1) is repre-
senting a protein site where no changes were allowed: an import-
ant site for the structure and/or function of the protein. Thus,
conserved positions (Figure 1) were the first and most obvious
predictors of functionally important residues from sequence in-
formation alone [5]. Being able to computationally predict the
residues of a protein that are essential for its function is very im-
portant, taking into account how difficult and expensive it is to
determine that experimentally. The knowledge of a protein’s
functional sites is important not only to understand its function
at the atomic level, but also to devise ways to modify it.

Apart from full conservation, there are other patterns in MSA
positions indicative of functional importance. If we can subdivide
our protein family in different subgroups with distinct functional
specificities (i.e. differing in certain functional details while shar-
ing the global common function of all the proteins), some pos-
itions might show up with a subgroup-dependent conservation
pattern: they are conserved only in particular subgroups, or the
conserved amino acid is different for the different groups (Figure
1). The fact that their conservation is restricted to a particular
subgroup suggests that their functional role is related to the func-
tional specificities/peculiarities of that group, instead of the glo-
bal function of the family. For example, within an alignment of
enzymes catalyzing the same reaction but on different sub-
strates, fully conserved positions would be pointing to the

residues involved in the catalysis (the common function of the
family) while group-dependent conserved positions could point
to residues involved in the specific recognition of the different
substrates (Figure 1). For these reasons, these positions are gener-
ally termed ‘specificity-determining positions’ (SDPs) and they
complement the fully conserved positions described above as
predictors of functionally important residues from sequence in-
formation alone. The functional information they provide is dif-
ferent from that of fully conserved positions. They can be used,
for example, to design mutations to change the substrate specifi-
city of an enzyme while keeping its catalytic activity, overall regu-
lation and other functional aspects (Figure 1). Thus, they allow
playing with subtler functional aspects of the proteins, whereas
mutations in fully conserved positions would generally lead to a
nonfunctional protein.

This review provides an overview of current computational
approaches to detect SDPs in protein sequences and their po-
tential applications in biotechnology and biomedicine. We will
start with a number of published examples where the computa-
tional detection of SDPs was a fundamental part of a larger
work (generally including experimental parts) aimed at better
characterizing protein families of industrial/medical import-
ance. They illustrate the main scenarios in which the study of
SDPs can be useful. After that section, aimed at convincing the
reader of the importance of SDPs, we will summarize the main
computational methodologies for detecting them, focusing on
those that are available to nonexpert users through graphical
and web-based interfaces.

Examples of SDP analyses

Being able to discern which residues within a protein might be
in charge of controlling its functional specificity can be useful in
certain situations. In general, it allows getting insight into the
atomic basis of that specificity, which is essential to design mu-
tants with interchanged or new specificities, which has obvious
applications in Biotechnology and Biomedicine.

Because the methods for detecting SDPs need many sequences
of members of the family of interest to work, they were first
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applied to families that were the target of huge sequencing efforts
(in the pre-genomic era) owing, for example, to their medical inter-
est. The ‘Ras’ superfamily of small GTPases comprises a large
number of eukaryotic proteins involved in several cellular func-
tions [6, 7], including signaling cascades related to cancer. These
proteins change their conformation in a cycle driven by GTP bind-
ing and hydrolysis and interact with different effectors. The Ras
superfamily comprises >10 subfamilies, with particular functional
specificities and playing different cellular roles. The evolutionary
and functionally unrelated interactor(s) recognized by each sub-
family determines its cellular role, this being as diverse as control
of membrane traffic (‘Rab’ subfamily), signaling cascades involved
in cell proliferation (Ras) or nuclear transport (Ran). The residues
involved in GTP binding and hydrolysis are fully conserved in the
superfamily, as this is the function common to all its members,
while the positions responsible for the binding of the different ef-
fectors tend to show up as SDPs. Consequently, a number of stud-
ies tried to extract those SDPs from MSAs of this superfamily to
better understand how these proteins work, as well as design mu-
tants with altered/switched specificities. For example, Bauer et al.
identified the two main SDPs of this superfamily and were able to
swap the interaction specificities of the ‘Ral’ and ‘Ras’ subfamilies.
Mutating these two residues was enough for making ‘Ral’ behave
as ‘Ras’, while mutating only one of them they could make a ‘Ras’
protein function as a ‘Ral’ [8]. In this case, the ‘SequenceSpace’
method was used for detecting the SDPs (see next section).

Another family of biomedical interest comprises the ‘carni-
tine/choline acyl transferases’, involved in fatty-acid transport
across membranes. Their functional specificities can be defined
according to multiple axes: some of them use ‘choline’ as anti-
porter, while others use ‘carnitine’; some can be inhibited by the
presence of ‘malonyl-CoA’, while others are insensible to it, i.e.
they transport fatty acids with different chain lengths, etc. By
computationally extracting the residues associated to each of
these specificities (SDPs), it was possible to design mutants with
one of these functional aspects altered while the others remain
unchanged. Examples include turning a malonyl-CoA-insensitive
enzyme into another that is inhibited by this molecule, and the
other way around [9], or switching the fatty-acid length prefer-
ence, making an enzyme that normally transports short-chain
fatty acids capable of transporting long-chain ones and the other
way around [10]. In these cases, the authors used the
‘SequenceSpace’ program, complemented with interactive visual
examination of the protein alignments and structures.

Also of biomedical interest is the family of receptors of psy-
choactive bioamines. These G-protein-coupled receptors re-
spond, among others, to the endogenous hormones ‘dopamine’
and ‘serotonine’. A computational analysis of the SDPs of this
family allowed predicting the residues responsible for discrimi-
nating these two hormones [11]. The authors also discovered a
second set of SDPs unexpectedly far from the hormone-binding
site, and found that they control the efficacy in triggering the
conformational change leading to G-protein activation. This site
is allosterically connected with the hormone-binding site and
opens interesting possibilities for drug development. Moreover,
it was possible to convert a dopamine receptor into a serotonine
receptor playing with mutations in these SDPs. The authors
used the ‘evolutionary trace’ (ET) method (see next section) for
performing the SDP analysis in this family of proteins.

In another interesting work, Ratnikov and co-workers detected
the SDPs in a family of matrix metalloproteinases [12]. These en-
zymes degrade proteins at the extracellular matrix, being essential
in processes such as morphogenesis, wound healing and tissue re-
pair and remodeling. They are involved in the progression of

diseases such as atheroma, arthritis, cancer and chronic tissue
ulcers [13]. For the analysis of SDPs the functional subgroups were
automatically defined (see next section) according to the patterns
of cleavage efficiencies in a panel of phage-displayed peptide sub-
strates. That is, proteins with similar cleavage patters were
grouped together. As in other cases, it was possible to change the
substrate preferences of these proteases mutating some of these
SDPs, opening interesting possibilities for designing proteases with
‘a-la-carte’ peptide recognition patterns. Owing to the peculiarities
of the subfamily classification (based on patterns of peptide
cleavages), the authors used an ad hoc approach for performing
the SDP analysis.

A similar analysis of SDPs was carried out with the ‘JDet’
package (see next section) in the family of bacterial amino acid
racemases, a group of proteins of biotechnological interest [14].
The aim was to get insight into the residues controlling the
range of substrate specificity of these enzymes: some of these
enzymes are specific for alanine, while others are able to racem-
ize a much larger spectrum of amino acids. Again, it was pos-
sible to experimentally demonstrate the involvement of these
SDPs in substrate binding, opening the possibility of designing
racemases with desired substrate specificities.

Another example is the sequence analysis of the eight sub-
units of the eukaryotic chaperonin ‘CCT/TRiC’. This macromol-
ecular complex assists in the folding of key proteins such as actin
and tubulin. Its functional form is a hetero-octamer of eight dif-
ferent (albeit homologous) subunits forming a barrel inside which
the refolding process takes place, in a cycle driven by ATP binding
and hydrolysis. In prokaryotes, this molecular machine is com-
posed of eight identical subunits, and they act in a concerted way
during the ATP-driven folding cycle (the barrel is symmetric in its
functioning). On the contrary, it is well known that in the eukary-
otic CCT the subunits do not act in a concerted manner and they
define an asymmetric barrel with distinctive functional sides.
Nevertheless, the atomic determinants of this asymmetry were
not known. An SDP analysis of the subunits, performed with the
JDet package, allowed detecting the positions differentially con-
served in them. Most of these positions were around the ATP
binding site, suggesting that the different affinities for ATP of the
subunits were the ultimate responsible for the functional asym-
metry observed in this complex [15]. This observation also opens
the possibility of designing CCT mutants with different degrees of
asymmetry (or totally symmetrical) and studying their effects on
its chaperone activity.

A family of bacterial ‘small multidrug transporters’ was also
subject to SDP analysis, in this case using an ad hoc protocol, for
locating the residues responsible for the binding of certain drugs
(and hence responsible for the resistance to them). As in the other
cases, by experimentally mutating these positions, the authors
were able to change the specificity of the transporters what was re-
flected in the resistance profiles of the corresponding bacteria [16].

As a final example, in a recent study Chevalier et al. identi-
fied a mutant of DWARF14, an alpha/beta hydrolase involved in
‘strigolactone’ signaling during plant growth, revealing a resi-
due essential for its function [17]. This position was in fact one
of the SDPs that explained the specificity for ‘strigolactone’, as
compared with other homolog enzymes acting on a different
hormone signaling pathway.

Computational approaches for detecting SDPs

Although idealized representations such as that shown in
Figure 1 can give the impression that the problem of locating
SDPs in MSAs is easy, in the case of real alignments of large
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Figure 2. Screenshots of the interface of JDet. The main window contains the MSA loaded by the user, where five subfamilies (red, blue, green, orange and yellow) were
automatically detected by the program. The SDPs detected by different programs are shown at the top row (green balls), and the corresponding positions in the MSA
(columns) highlighted. The sequence logos for these positions are shown on the right. A window with a representative 3D structure with the SDPs highlighted on it and
another with 3D projections of the sequence and residue spaces are shown. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

proteins with hundreds or even thousands of sequences it is far
from being trivial. The main reason is that the conservation pat-
terns in these real alignments are not perfect, and there are al-
ways deviations from the ideal trend illustrated in Figure 1.
These deviations (non-perfect conservation) can be owing to
different reasons, including sequencing errors and errors in the
alignment. Also, allowing or not allowing conservative substitu-
tions (changes involving chemically similar amino acids) can
drastically change the conservation score of a given position.
Indeed, even detecting fully conserved positions is far from
being trivial [5]. In addition, there is the problem of distinguish-
ing subfamily-specific conservation patterns that are related to
function from those owing to other reasons (e.g. imposed by the
uneven distribution of sequences in the MSA) [18]. Finally,
the definition of the subgroups (e.g. the three subfamilies in
Figure 1) can be problematic too, as for alignments with hun-
dreds of sequences it is impossible to have experimental infor-
mation on the functional class of every protein. For this reason,
most approaches for detecting SDPs also ‘predict’ concomitantly
the functional classes of the proteins present in the MSA, gener-
ally grouping them based on phylogenetic criteria.

All these difficulties led to the development of many differ-
ent approaches for detecting SDPs in MSAs. One of the first
approaches to detect SDPs was the ET method [19]. ET takes as
input a MSA and the phylogenetic tree of the proteins within it.
Based on this tree, the method explores successive hierarchical
partitions of the MSA into more specific subfamilies, and look
for the conserved positions showing up at each partition. ET
ranks the positions of the MSA depending on the partition
where they become conserved: fully conserved positions appear
at partition O (the whole MSA), in partition 1 appear the pos-
itions that are differentially conserved in the two main subfami-
lies within the MSA, and so on. From its initial implementation,
ET was improved in different ways (e.g. [20]). An advantage of

ET-related approaches is that they detect not only SDPs but also
functional residues in general (including fully conserved). A
drawback, at least in the initial implementations, is that it does
not consider conservative changes when evaluating subfamily
conservation.

Another family of methods use a criterion based on mutual
information to detect SDPs, given a partition of the MSA into
subgroups. One possibility for defining that partition of the MSA
is to look for the ‘optimal’ partition according with some criter-
ion, such as that rendering the ‘best’ set of SDPs [21]. Another
possibility is to use the ortholog/paralogs definition to partition
the MSA, under the assumption that groups of orthologs are
functionally homogenous [22]. It is also possible, using heuristic
approaches, to try exploring all possible subfamily groupings
(not only those coherent with a given phylogenetic tree) and re-
port that which maximizes some criterion, together with its
associated SDPs. This is the strategy followed, for example, by
CEO [23]. A drawback of many of these approaches is that they
do not take into account conservative substitutions (each amino
acid is just considered a different ‘symbol’ in the mutual infor-
mation calculation). Small MSAs (low number of sequences) or
those with uneven representations of the family diversity can
also negatively influence these methods. In general, they have
the advantage that they can work with (indeed they are bene-
fited from) large MSAs with hundreds or even thousands of
sequences.

A family of methodologies for detecting SDPs uses a vectorial
representation of the MSA in which each protein is represented
as a vector in a high-dimensional space, defined based on its
amino-acid sequence. This vectorial space can be reduced to a
low-dimensional one, preserving most of its information using
standard statistical techniques such as Principal Component
Analysis. In this space, vectors representing similar proteins
(subgroups, subfamilies) cluster together (e.g. Figure 2). The
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ability of these methods to detect SDPs resides in a similar vec-
torial treatment for the individual residues, which generates an
equivalent space where the residue clusters colocate with those
of the families they are SDPs for. The SequenceSpace program
was the first in implementing this approach [24]. A more recent
representative of this type of methods is S3Det [25] (Figure 2).
These methods do not take into account conservative substitu-
tions either. The residue and protein ‘spaces’ generated by these
methods have been shown to be rich sources of evolutionary
and functional information when interactively manipulated/in-
spected by an expert.

Another strategy for locating SDPs is to look for positions
whose pattern of change (‘mutational behavior’) resembles that
of the whole MSA, as that is the expected behavior for these
subfamily-dependent conserved positions: i.e. in an SDP pos-
ition, similar amino acids correspond to globally similar pro-
teins, and the other way around. As a representative of this
strategy, in Xdet [26, 27] the pattern of change of a position is
represented by a matrix containing the similarities for all pairs
of amino acids at that position, defined according to a standard
substitution matrix. The ‘mutational behavior’ of the whole
MSA is represented by an equivalent matrix containing the glo-
bal similarities for the corresponding pairs of proteins. The pos-
itions with matrices most similar to that of the whole
alignment are selected as the predicted SDPs. These approaches
do take into account conservative substitutions. As a drawback,
they are not suitable for large MSAs because the matrices they
use for representing the data grow quadratically with the num-
ber of sequences.

A typical extension commonly applied to all these method-
ologies consists in incorporating information on the 3D struc-
ture of the protein if available: generally filtering the initial set
of SDPs to those in the surface of the protein and/or clustered
together in 3D, as these are the expected structural characteris-
tics of a region involved in functional specificity. Nevertheless,
there are also methods that make explicit use of this 3D infor-
mation, instead of using it as a posteriori filter. For example,
Landgraf et al. [28] use 3D information to define surface patches
(as sets of neighboring surface residues) and compare their con-
servation patterns with those of the whole family. Some meth-
ods use 3D information to create structural alignments of
distant homologous, which cannot be obtained using solely se-
quence data. These alignments covering long evolutionary dis-
tances are then used for locating the functional subgroups and
SDPs [29, 30].

Finally, we can define another group with the ‘ensemble’
approaches. These combine either different SDP detection
methods or SDPs with other function-related patterns
(coevolution, conservation, energy-based criteria), e.g. [31, 32].

Note that most of these approaches do not take as input an
explicit classification of the proteins in subgroups (Figure 1), but
they infer, in one way or another, the subfamily composition
from the sequence relationships in the same MSA. In some con-
texts they are called ‘unsupervised methods’, to differentiate
them from the ‘supervised’ ones, which, apart from the MSA,
take a subfamily classification as additional input (which may
or may not coincide with that inferred from the sequence rela-
tionships represented by the MSA) [27]. It is easy to see that
most of the unsupervised methods described can be turned into
supervised: e.g. forcing a given grouping of the sequences in-
stead of obtaining it from partitions of a phylogenetic tree, forc-
ing the sequence clusters in the sequence space or imposing an
external protein similarity matrix instead of extracting it from
the MSA.

We have described some representative methods for each of
the main approaches. The aim of this review is not to discuss all
available methods. For other more exhaustive reviews focused
on methods see [31-35]. Some of these also include benchmarks
and comparisons of the different methodologies. We also refer
to [4, 18] for a more extensive discussion of SDP detection meth-
ods and the relationship of SDPs with other mutational patterns
observed in MSAs. Finally, a good practical tutorial on how to
generate MSAs and extract conservation patterns from them,
including SDPs, can be found in [34].

While most of the methods described above are available
as stand-alone programs or through Web interfaces (e.g. [36]),
some packages have been specifically developed to facilitate
the daily work with SDPs and other MSA conservation patterns
related to function. JDet [37] is a graphical interactive multi-
platform open-source package for the interactive calculation
and visualization of function-related conservation patterns in
MSAs and structures (Figure 2). The user has to provide a MSA
as only input for the program. Two methods for the detection
of SDPs are included in the package (Xdet and S3Det, com-
mented above), and others can be incorporated as plug-ins or
their predictions imported. One of the methods, S3Det, also re-
ports the subfamilies automatically found in the MSA (colors
in Figure 2). JDet also contains some useful features for work-
ing with MSAs and SDPs, such as a generator of sequence
logos, the possibility of mapping the predicted SDPs in 3D
structures and some MSA editing capabilities. The goal of this
software is to make these approaches closer to the experimen-
tal researches so that they can apply them to their protein(s)
of interest.

Conclusion

SDPs complement fully conserved positions as predictors of func-
tionality. Identifying positions responsible for functional specifi-
city is crucial for understanding and modifying protein function.
From the examples described in this review, it is clear that such
analysis allows designing proteins with subtle functional vari-
ations or interchanged specificities, opening interesting biotech-
nological possibilities. Although new methods continue to be
developed, we can say that the existing approaches for detecting
SDPs are mature enough for being incorporated into the tool-
boxes of researches in the biotechnological and biomedical areas.
This ‘maturity’ includes professional and easy-to-use graphical
interfaces, which allow their usage by non-bioinformaticians.
Also contributing to the widespread use of these methodologies
is the continuous increase in the number of known protein se-
quences that constitute their basic input. As shown by the ex-
amples discussed here, they are being successfully applied to
protein families of biomedical and biotechnological interest, and
we expect this trend to continue in the future. The objective of
this review is to make the potential users of these approaches
aware of their possibilities and the landscape of methods avail-
able. These users can now go to more specific reviews and bench-
marks focused on the methods (e.g. [31-35]) to look for that more
suitable for their specific need.

Key Points

* Specificity-determining positions (SDPs) complement
the classic fully conserved positions as predictors of
protein functionally important sites. SDPs point to
protein regions involved in functional specificity.
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* The performance of the methods for detecting these
positions is continuously increasing owing to meth-
odological improvements as well as the ever-increas-
ing repertory of known protein sequences.

These approaches are mature enough for being incor-
porated into the toolboxes of molecular biologists and
are being applied to protein families of biotechnolo-
gical and medical interest so as to get insight into the
atomic basis of their functional specificities, which is
essential to design mutants with interchanged or new
specificities.
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