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Abstract
Global computing, the collaboration of idle PCs via the Internet in a SETI@home style,

emerges as a new way of massive parallel multiprocessing with potentially enormous CPU

power. Its relations to the broader, fast-moving field of Grid computing are discussed without

attempting a review of the latter. This review (i) includes a short table of milestones in global

computing history, (ii) lists opportunities global computing offers for bioinformatics, (iii)

describes the structure of problems well suited for such an approach, (iv) analyses the anatomy

of successful projects and (v) points to existing software frameworks. Finally, an evaluation of

the various costs shows that global computing indeed has merit, if the problem to be solved is

already coded appropriately and a suitable global computing framework can be found. Then,

either significant amounts of computing power can be recruited from the general public, or – if

employed in an enterprise-wide Intranet for security reasons – idle desktop PCs can substitute

for an expensive dedicated cluster.

INTRODUCTION
The idea to distribute computing tasks is

old. People have been thinking about this

since 1973, when the first Ethernet

network was installed in the Xerox Palo

Alto Research Center. Recently, interest

exploded because (i) many cheap CPUs

always outperform the fastest single CPU

available for work that can be distributed,

(ii) most CPUs in desktop PCs are only

used marginally, (iii) the success of the

Internet has connected many of these

little used CPUs and (iv) the demand for

CPU power in science is exploding. As

supercomputers nowadays consist of a

large number of CPUs, many scientists

already structure their programs in such a

way that they use multiple CPUs. These

facts and the shrinking gap between the

computing power of CPUs in ordinary

desktop PCs and supercomputers have led

to the idea of using idle cycles of CPUs

connected by the Internet for scientific

computing. The success stories of

SETI@home and similar systems have

long become more than a proof of

concept for global computing.1 The

realisation that 10,000 desktop PCs with

an average performance of 500 MFLOPS

and appropriate software can be turned

into a 5 TeraFLOPS world-class

supercomputer, has caught the interest of

big pharmaceutical enterprises and global

computing software companies alike.

Large-scale scientific computing

enterprises took another route to a similar

end. When physicists noted that their

demands were too large for any single

computing facility, they started to develop

systems that allowed pooling of resources

in an organisation, thus the Grid was

born.2 Its name stems from the notion

that eventually it will become possible to

plug computing tasks into the Grid as

electrical devices are plugged into the

electrical power grid. Nobody cares

where the actual power comes from.

Today the Grid is no longer constrained

to physics, but is well on its way into life

sciences.3 The Grid gave rise to

e-Science, a new term describing research

done through distributed global

collaborations enabled by the Internet,

using very large data collections, tera-scale

computing resources and high-

performance visualisation.4–7

Both approaches have in common that

corresponding applications present
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themselves to the user as one very

powerful system – no matter how

complex their underlying structure.8 This

paper reviews opportunities for

bioinformatics offered by these new

approaches with the main focus on global

computing.

DEFINITION
Global computing 9,10 can be defined as

massive parallel distributed computing using the

Internet for data transfer to build a centrally

controlled meta-computer from the idle CPU

cycles of PCs of voluntary participants from the

general public. Other names for the same

approach include Internet-based

distributed computing, free grid

computing and peer-to-peer (P2P)

computing. However, in a narrow sense

P2P refers to a structure where any peer

can commission computing tasks, while in

global computing all tasks are distributed

by a central system. As this special form of

grid computing is very young, related

nomenclature is still evolving.11,12 The

definition above requires (1) voluntary

participation as opposed to parasitic

computing that can force computers on

the Internet to produce results by

misusing the TCP/IP protocol13 and (2)

openness to the general public as opposed

to typical Grid projects that allow

participation only for members of

carefully selected institutions. Table 1

shows a short history of global

computing. A global computing project

can be operated at two levels:

• Semi-automated projects involve

occasional manual interaction on the

participant’s side to get new computing

tasks and submit results.

• Fully automated projects install a

program that automatically gets

computing tasks and submits results. It

sometimes even automatically updates

itself to newer versions.

It should be noted that the resource-

sharing approach is virtually opposite to

traditional client–server computing:11

traditionally, clients hand some tasks over

to the server (worker) and wait for the

answer. In global computing the server

(distributor) hands out computing tasks to

clients (workers) upon request. While the

initiative for a contact is on the client side

in both models, the clients do the actual

work in global computing.

This paper does not review Grid

technologies. These help discover,

authenticate and marshal IT resources

within virtual organisations to enable

distributed collaborations between

computers and sometimes even between

the people behind the computers. Some

of the higher goals of the Grid are to

facilitate e-Science and e-Business7 and

to build an intelligent semantic web5

that contains many types of

interconnected data, metadata and

services in order to easily evaluate even

complex questions. To glue these highly

diverse functionalities together, web

services14,15 and the widely embraced

Levels of global
computing

Other names for global
computing

Grid computing

Table 1: Short history of global computing

Year Milestone

1995 George Woltman: use free computing resources on the Internet for GIMPS, the ‘Great Internet
Mersenne Prime Search’, the first semi-automated global computing project

1997 Independent start of the first fully automated global computing projects: PrimeNet (automated
GIMPS) and distributed.net (brute force cracking of encryption keys)

1999 Start of SETI@home, currently the largest project with .3.8 million participants, .1 million CPU
years and .1.7 3 10

21
floating point operations in 38 months since start

2000 Global computing goes commercial. United Devices, Entropia, Parabon and others start business
2001 First companies go out of business
2002 About 60 active and 20 completed global computing projects listed by Kirk Pearson

(http://www.aspenleaf.com/distributed/)
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Open Grid Service Architecture

(OGSA16) play an important role. To

facilitate standardisation of fast-evolving

Grid technologies, the Global Grid

Forum was founded.17 For further

details, see some of the innumerable

reviews about the Grid.2,3,16–26

Nevertheless, a few remarks will help

the reader to see the larger context of

global computing in the field of Grid

computing. Global computing builds a

computational grid. It is very much

centred on distribution of computations

to substitute a dedicated supercomputer.

Other types of grids, as reviewed by

Skillicorn12 include access grids (different

users interact with a virtual

environment, as if it was a single

dedicated hardware platform where

performance is not the first priority),

data grids (allow easy handling of

extremely large data sets, eg for next

generation particle accelerators) and data

centric grids (access and compute with

extremely large data sets that cannot be

moved to one place, eg distributed data

mining).

Another way of characterising grids is

by ownership:12 free grids exist because

some individuals either allow unused

cycles on their computer to be used for

interesting projects or allow unused disk

space and bandwidth to be used for file

sharing. True global computing systems

build free computational grids to allow

everybody from the general public with a

suitable Internet PC to contribute CPU

cycles. This is especially interesting for

researchers who cannot afford a dedicated

compute cluster and, hence, are willing to

spend the time to develop such a highly

specialised system. While some

frameworks are available to help build

global computing systems (see below), the

effort needed to do this and to advertise

such ‘anything@home–systems’ should

not be underestimated. Moreover,

developers must be willing to deal with

the security problems associated with this

approach:

• Developers must have nothing to hide,

be it valuable results or special

algorithms in the code that may be

extracted by reverse engineering.

• Developers must have a way to make

sure that results are computed correctly

and work from malicious participants is

excluded by using checksums,

repetition of work units, etc.

• Participants have to trust developers

that participation cannot damage their

system, because, for example, only

trusted developers are allowed to

distribute code, a sandbox-mechanism

as in Java is employed.

• Participants have to trust developers

that their software does not spy out a

participant’s system, because, for

example, they know the developers,

the source code is publicly available, a

sandbox prevents critical operations.

An easy way to deal with the security

issues is to employ only computers from

within a virtual private network that sits

behind the same firewall and belongs to a

single corporate owner. Such virtual private

grids are quite successful in large

enterprises that need considerable

computing power, eg to screen for

potential drugs by protein– ligand

docking. Instead of buying a dedicated

cluster, such organisations can buy

software that allows them to run a

Windows version of the same code on the

desktop PCs of their employees or a Unix

version on servers with free capacities (see

Table 5 below). Existing software can

usually solve issues related to security,

property, priority management and

payment within the same organisation, as

a certain level of natural trust exists within

such a group. However, no company

would risk the chance that competitors

may be part of (and spy into or corrupt)

its latest grid efforts. Thus, it is easy to see

that trading of computing power in the

industry will have a difficult time

becoming a public market, even if

calculating fair prices and accounting

Global computing in its
context of Grid
computing

Free grids

Virtual private grids
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were no problem. Owing to these

reasons, companies that had the vision to

make money with global computing have

shifted their focus to deliver tools for

building virtual private computational

grids that save their owners from costs due

to dedicated clusters.

This may be different with public grids,

as their computations and their results do

not have to remain confidential. Here, a

main issue is how to protect providers of

CPU power from people who have no

right to access it, as public grids are not

open to the general public like free grids.

Public grids are mostly being developed

by public research agencies that have their

own computing facilities and wish to level

out peaks in requests for computing

power. Thus, participating organisations

should possess enough computing power

to meet their average needs and rely on

the Grid for peaks only. Before a public

grid can become an effective market of

computing power, a common set of

protocols16 and policies are needed as

much as an effective way to compute

prices and manage accounts.12,23 Before

this is achieved, public grids are likely to

play a role only for those organisations

that already have about as much dedicated

computing-power as they need. They can

use the Grid to level out compute peaks,

mediate access to common resources or

handle large amounts of data in a scalable

way – very much the needs of high-

energy physicists that invented the

Grid.27,28 While these communities set up

their own public grids to meet their

needs, the killer application that may

drive global standardisation of a big public

grid may be healthcare. For example, if all

mammography data in the USA are stored

for future analysis (which is sensible),

many petabytes of data need to be

handled.29 However, before a big public

grid takes off, enormous reservations

regarding security and payment issues will

have to be overcome.

Nevertheless, these issues are no

problem for an increasing number

of biology-related projects that use

the Grid very effectively to do

e-Science.3,6,7,25,26,29–31 Applications

include:

• 3D Monte Carlo simulations of

molecular interactions in living cells

using MCell;32

• collection, analysis and visualisation of

3D optical microscopy data on in situ

gene expression using the 3D OPT

Microscopy Grid;7

• getting an overview over global and

local biodiversity details using GRAB

(GRid And Biodiversity);7

• comparison of the brain image of a

patient against the population average

using The Dynamic Brain Atlas;7

• sophisticated homology and fold

recognition methods to visualise and

assign 3D protein structures in the

proteomes using the Structure Based

Proteome Annotation Grid;33

and many other interesting applications.

In summary, global computing systems

are free computing grids that are often

employed by scientists that (i) cannot pay

for the computing power they need, (ii)

do not mind whether results or code

remain confidential and (iii) can raise

enough public interest in the topic of

their computational research to get

enough participants. Closely related are

virtual private grids that basically use the

same approach, but restrict it to ‘ordained

voluntary’ participants that belong to the

same organisation and sit behind the same

firewall.

BIOINFORMATICS IN
GLOBAL COMPUTING
Some active and completed global

computing projects that touch

bioinformatics are listed in Table 2. While

some do sequence analysis, the most

prominent projects engage in folding

proteins or finding drugs (screen for

interactions between potential drugs and

proteins using docking algorithms).

Public grids

Problems of a compute-
power market

Examples of Grid
applications
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However, any bioinformatics problem

can be addressed by global computing, if

it has a suitable structure (see below).

Together with the rise of global

computing,1,34 grid computing is used

more and more to solve computational

problems in biology.3,6,7,25,26,29–32

Global computing power is no

substitute for developing intelligent

software. If a simple BLAST query is run

on a global (or distributed) network, it is

faster, not better. It still includes as many

false positives and negatives as if it were

run on a slower computer. Most research

and development in bioinformatics today

is personnel-limited, not computing

power-limited and it is often cheaper to

buy an additional dedicated PC than to

pay the price in staff for going global.

However, when many BLAST searches

have to be run in a short time, many

proteins have to be folded, many ligands

have to be docked or many complex

individual-based models have to be

simulated, then global computing can

indeed help.

While sometimes hopes run high to

easily solve complex problems by global

computing, in reality it is not always

feasible to start a global computing

project. Besides the general structure of

the computational problem, practical

details of software and project

development can hamper such efforts

considerably. And if the whole system is

not run on privately owned PCs, public

participation psychology and promotion

efforts need to be considered.

STRUCTURE OF
PROBLEMS ADDRESSABLE
BY GLOBAL COMPUTING
There are well-defined characteristics of

problems that can be efficiently addressed

by global computing:

• They express trivial parallelism (so-

called embarrassingly parallel or multi-

parameter applications): work can be

divided into completely independent

units of reasonable size.

• Work units have a high computation

per bandwidth demand and

corresponding files are of reasonable

size.

• Memory requirements are small

enough to fit desktop PCs.

• The worker is ‘folder-centric’ (ie all

input files are automatically read from

its current working directory and all

results files are written to it; there are no

external interactions, except getting

new tasks and submitting results).

The speed of global
computing . . .

. . . does not solve
algorithmic problems

. . . it creates new ones

Table 2: Some active and completed global computing projects that touch bioinformatics.
For links and other projects see http://www.aspenleaf.com/distributed/ or http://
www.evolutionary-research.net/Archive/Links/GlobComp/

Category Existing systems

Linear regression Exhaustive linear regression of clinical trial data (Parabon)

Sequence analysis HMMER, BLAST, SIM4 (United Devices), TurboBLAST (Entropia), multiple
sequence alignments (Übero)

Protein structure prediction Folding@home, Genome@home, Parabon, Folderol, Distributed Folding

Docking drugs to protein structures THINK search for drugs against cancer and anthrax (United Devices)
AutoDock in FightAIDS@home (Entropia),
Screen for oral drugs against anthrax + smallpox + Ebola (D2OL)
Screen for drugs against Tuberous Sclerosis Complex (Rothberg Institute
for childhood diseases)
Find-a-Drug (Treveren Consultants, the makers of THINK)

Individual-based models evolution@home

Monte Carlo simulations Compute future world climate (Climateprediction.com)
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How to break a big
problem into small
tasks

When not to use global
computing

Corresponding applications analyse a

large amount of data by targeting one

subset after another, as for example many

independent protein sequences that need

to be folded into 3D structures or a large

sequence database that can be searched

one chunk at a time. Other examples

include individual-based simulations of

evolution that just start with different

parameters or regression analysis of many

small subsets of a big clinical trial database.

This general structure usually requires

some pre-processing (to divide the big

task into smaller work units) and some

post-processing (to synthesise the big

picture from all smaller results). It should

be noted that network bandwidth and

Moore’s law impose lower and upper

computing time limits for tasks that are

worth distributing.35 The resulting range

from seconds to months is reflected in

current global computing projects, with

several hours as a typical value.

However, if (i) network demand is too

high, (ii) different work units need to

communicate with each other

occasionally, (iii) deadlines for completing

tasks need to be enforced, (iv) the data

cannot be kept in one place or (v) other

special Grid features are needed, then

some Grid solution should be employed.

If work units need to communicate

extensively among themselves, a

supercomputer should be used. The price

of the latter solutions increases, as

network speed increases cost. Figure 1

depicts this relationship graphically.

ANATOMY OF SUCCESSFUL
PROJECTS
Observing existing projects allows one to

derive requirements for success in global

computing. To run a highly successful

global computing project, you need to:

• have a good way to pack your problem

into independent work units of

appropriate size (CPU time hours to

weeks, transmitted data as little and as

rare as possible, depends on the

network);

• develop worker software that has

almost no interference with the users’

Figure 1: Problems that can be addressed by global computing have structures other than
those only addressable by traditional grid computing or supercomputing. The small arrows
symbolise potential communication between different tasks on different nodes, which is not
possible in global computing. While the number of nodes is fixed in a supercomputer, a grid
can add new nodes dynamically, if they belong to the same virtual organisation and comply with
its policy. Participation in global computing is free, but a central authority controls computation
of more or less uniform work units. In true peer-to-peer computing (not shown), there is no
central authority; thus each node not only works, but also can schedule new tasks

Global Computing

work
units

Distributor
Collector

Remote participants with
slow, insecure connection

Grid Computing Supercomputing

tasks

Grid

Participants with
fast, secure connection

Nodes with extremely
fast, secure connection

Price

ToDo Results ToDo Results ToDo Results ToDo Results
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daily work; see Table 3 for features of

the ideal worker software;

• set up a central server that automatically

distributes work units;

• set up a central server that automatically

collects results, checks their integrity

and facilitates analysis;

• build a web site that explains the

problem you are trying to solve,

distributes the worker software for free

and publishes participants’ computing

statistics;

• offer a compelling motivation to

participate (see Table 4 for examples);

• organise a good, international

advertisement campaign.

As can be easily seen from this list, the

reward of global computing power comes

only at the cost of dealing with numerous

problems that have no primary

connection to the original content of the

research. Owing to dependency on public

participation, even non-IT issues such as

advertisement and motivation have to be

considered.

After describing the highest possible

standards above, it should be noted that

one does not necessarily need a big team

to run a global computing project.

Several projects actually run as a one-

person effort. If everything has to be as

simple as possible, then choose a semi-

automated mode of operation (e-mail or

web distribution of groups of tasks and e-

mail submission of results), support only

the Windows platform, make only a

Requirements for
success in computing

Low effort global
computing projects

Table 3: Features of the ideal worker software for free global computing projects

Category Details

Readily available Easy distribution without registration over the web to get started.
Cross-platform code included in major share-ware collection CDs.
Small installer size (download-times and space on the local hard disk).

Fully automated Get work units and submit results without participants’ interaction.
Automated computing code download.
Automated upgrading of the worker itself.

Non-interfering Lowest background priority possible.
No use of virtual memory (may block the rest of the system).
Immediate stop without losing results at participant’s wish.
Stop automated online connections at participant’s wish.
Screen-saver only version for less interference.

High security standards Secure execution environment shields participant’s computer from potentially
malicious code of a computing application (Sandbox).
Secure results transmission keeps participants from deceptive practices.
Saves intermediate results to minimise losses in case of system crash.
System service version for computing after logout.

Nice graphical user interface Show beautiful picture of what is being computed.
Show progress and local computing statistics and allow easy interruption.
Easily edit preferences that describe the commitment of the participant. (Allow
commercials? What project? High-score identity? Work unit size in terms of CPU-
time, RAM, disk space and network bandwidth?)

Table 4: Possible motivations for
participants in global computing projects

• Interest in the specific problem
• Contribute to global progress in general
• Affinity to high-score races with meaningful side

effects
• Get famous by finding something significant
• Get the chance to win some money
• Commercial selling of computing time
• Execution of orders of their company on its

computer
• Philanthropic sponsoring by a company
• Like beautiful screen savers
• Want to have some fun
• Compute because their friends are doing it
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simple, static project web site and

advertise by one e-mail to a global

computing review site.1 This may well

be an option for some situations, as 10

years of global computing time are easily

worth more than 50,000 CPU hours on

a supercomputer.

Between these two extremes are

numerous paths to success in global

computing, but each one requires

building or using an appropriate code that

enables global computing.

EXISTING GLOBAL
COMPUTING
FRAMEWORKS
To solve the general problems that every

global computing project encounters, a

number of software frameworks have

been developed (Table 5). The easiest

frameworks provide code that is compiled

with and statically linked to the

application that shall be distributed. Such

code can manage automated distribution

of tasks and collection of results. Other

frameworks allow execution of native

code and facilitate automated updates of

the distributed worker software. Some

even provide a sandbox for execution to

keep such code from damaging the

participant’s system. Some frameworks

give a lot of attention to security and

authentication details, while others do

not. Many frameworks employ Java.

While this has the big advantage of being

(potentially) platform independent, it

sometimes requires that you have to

distribute the full Java platform with the

worker software to allow simple

installation. The resulting increase in

download size and potential conflicts with

other JavaVMs belong to the downside of

that approach. Some frameworks,

especially those of some global computing

companies, include support for some pre-

and post-processing tasks (divide labour

and integrate results).

These pre- and post-processing

facilities turn out to be a key factor in

global computing. Basically there are

two types of problems here: the ‘ruby-

Automating basic tasks
in global computing

Pre- and post-
processing are
important

Table 5: Some major frameworks for global computing and grid computing. Commercial
products are marked with �. This table includes most of the important frameworks for global
computing, but only a few from the multitude of grid computing frameworks. For more, see
collections in http://www.aspenleaf.com/distributed/distrib-devel.html, http://dmoz.org/
Computers/Computer_Science/Distributed_Computing/Platforms/and http://
www.GridComputing.com/

Platform name Developer Web site

Fida Ding et al. http://odinn.chem.washington.edu

COSM Beberg at Mithral et al. http://cosm.mithral.com

BOINC SETI@home II, Anderson et al. http://boinc.ssl.berkeley.edu

Models@Home Kriege & Vriend http://www.cmbi.nl/models

XtremWeb Cappello et al. http://www.xtremweb.net

MetaProcessor� United Devices http://www.ud.com

DCGrid� Entropia http://www.entropia.com

Frontier� Parabon Computation http://www.parabon.com

P2P Accelerator Kit Intel http://www.intel.com/ids/p2p

JXTA Sun http://www.jxta.org

Sun Grid Engine� Sun http://www.sun.com/gridware

Platform LSF� Platform http://www.platform.com

Globus Toolkit US universities and labs http://www.globus.org

Condor University of Wisconsin http://www.cs.wisc.edu/condor

DataGrid CERN http://www.eu-datagrid.org
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in-the-rubbish’ type problems screen a

large number of input possibilities for a

small number of valuable results (eg

GIMPS, SETI@home or potential drug

candidates). This makes data handling

easy: all tasks have the same priority

initially and either give an interesting

result that is further investigated

manually or are uninteresting and can be

written to an archive as they are. In

contrast, the ‘ant-hill’ type problems are

much more complicated. Here, things

are usually connected, as early simulation

results have implications for parameter

combinations scheduled in the future,

because scientists are watching results

and adjust their questions

correspondingly. At the end, more or

less all results are needed simultaneously

for interactive evaluation, as it is not the

single result, but its overall context that

is interesting (eg evolution@home).

Such hypothesis testing calls for flexible

scheduling, prioritising of particular tasks

and handling of work units that span

several orders of magnitude in

computational complexity. Often, it also

requires handling of incomplete results

when predictions of computational

complexity proved inadequate,35 as

biological questions tend to be painfully

unaware of associated computational

complexities. Since such features are

very specific to particular problem

domains, most global computing

frameworks feel definitively more

comfortable with searching for a ruby in

the rubbish.

Hardly any global computing

framework available allows users to

choose the computational complexity of

their work units. Experiences with

evolution@home, however, have shown

that it makes a great deal of sense to

support such a choice and participants

like it.35 This should be kept in mind, as

individual-based models are probably not

the only type of problem where natural

work unit sizes have a high variability.

Similarly, other problems may require

features that are yet unsupported by

current global computing frameworks.

COSTS OF GLOBAL
COMPUTING
When deciding whether global

computing or other means should solve a

particular problem, the price tag plays an

important role. In a commercial setting,

any global computing framework will

only run on PCs behind the company’s

firewall to avoid security problems

associated with public participants. If a

company considers buying a dedicated

cluster for running some existing ‘folder-

centric’ code, it should consider

employing a solution from one of the

global computing or Grid companies. For

a few per cent of the costs of a

corresponding dedicated Linux cluster,

one gets secure worker software for

Windows that executes native

applications in a secure sandbox and

automatically gets tasks from and submits

results to the server software included.

On the participant’s side
Participation in global computing is free

of fees. However, every participant has to

pay for their connectivity and electrical

energy. The latter is the equivalent of

about one light bulb per PC, while the

former is not very expensive in many

projects. Finally, there are no

administration costs, if your system is fine.

Uninterrupted computation, however,

may expose a weakness in your system

that was not apparent before (cooling

problems in summer, hard disk failures,

RAM problems, etc.; especially watch out

for problems in notebooks that are often

not designed for long-term uninterrupted

computation). Therefore participation can

only be recommended if participants have

a working air conditioning in summer

and a reasonable backup strategy (for most

ordinary PCs the cheapest solution is to

regularly copy everything to a dedicated

backup hard disk). Since system

administrators of larger facilities have to

provide that anyhow, additional costs to

make a large number of PCs participate

this way is low from the hardware

perspective.

Software administration costs on the

Ruby-in-the-rubbish
problems

Ant-hill problems

Commercial global
computing

Hidden costs of
participation

Participant choices of
computational
complexity
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participant’s side depend on the project.

With fully automated worker software

that even updates itself, administration is

reduced to a minimum. On the other

extreme, semi-automated projects require

regular interaction, which is no longer

trivial if the number of PCs increases.

Therefore, worker software that is as

simple as possible is important for global

computing projects.

On the operator’s side
Costs on the operator’s side depend

heavily on the framework and on what

exactly these costs include. If these costs

are defined in terms of distributing

worker software and work units on one

side and collecting results on the other,

then this is extremely cheap: United

Devices manages about 500,000

participant PCs with just two system

administrators. However, if data analysis is

included, things may easily get expensive,

as unclear objectives and little automation

can result in exploding costs. This should

not surprise operators, as a global

computing project should not start at all if

methods of analysis and goals are not

clear.

Besides the results-oriented part of

administration, no global computing

project can be active without a web site.

Keeping it up to date and organising the

publicity needed demand human

resources too. In the case of a public

project one should not forget the costs to

maintain a high-scores list. As a general

rule of thumb, global computing projects

with an automatically updated high-scores

list have several times more participants

than projects without, as many people

want to monitor their contribution and

see whether the project is still active.

When all this work is highly automated,

operator costs are low. However, to

automate this may require considerable

development efforts.

On the developer’s side
This is the biggest hurdle. In order to

efficiently concentrate on the scientific

issues, a global computing framework has

to take care of all low-level tasks such as

secure task and result transmission.

Unfortunately, selection of the best

framework for a particular situation

(features required, resources available) is

by no means a small task as such a

foundation determines what can be built

upon it. If a good framework is found and

the application has an appropriate

structure, costs of development can be

relatively low. Such applications already

have a ‘folder-centric’ worker and

corresponding pre- and post-processing

code. Then, from the perspective of the

application, the global computing

framework needs only to transfer input

files, output files and worker updates.

For those, who do not find an

appropriate ready-to-use framework for

their problem, only three possibilities

remain: abort going global, develop a new

framework or pick the best framework

available and supplement it with the

required functionality. The latter two

propel those engaged to the exciting front

of research in global computing.
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