
Serafim Batzoglou

received his PhD from MIT in

2000. He is an Assistant

Professor of Computer Science

at Stanford, and his research

focus is computational biology.

Keywords: sequence
alignment, local alignment,
multiple alignment, synteny
detection, rearrangements,
hidden Markov model

Serafim Batzoglou,

Department of Computer Science,

Stanford University,

James H. Clark Center,

318 Campus Drive, RM S-266,

Stanford, CA 94305–5428, USA

E-mail: serafim@cs.stanford.edu

Special Issue Papers

The many faces of sequence
alignment
Serafim Batzoglou
Date received (in revised form): 3rd December 2004

Abstract

Starting with the sequencing of the mouse genome in 2002, we have entered a period where

the main focus of genomics will be to compare multiple genomes in order to learn about

human biology and evolution at the DNA level. Alignment methods are the main

computational component of this endeavour. This short review aims to summarise the current

status of research in alignments, emphasising large-scale genomic comparisons and suggesting

possible directions that will be explored in the near future.

INTRODUCTION
Sequence alignment is the poster child of

bioinformatics. Alignment is the most

basic component of biological sequence

manipulation, and has diverse

applications in sequence assembly,

sequence annotation, structural and

functional predictions for genes and

proteins, phylogeny and evolutionary

analysis. The computational problem of

sequence alignment was born perhaps in

1966 with the definition of the edit

distance between two strings as the

minimum number of edit operations –

insertions, deletions and letter

substitutions – needed to transform one

string into another.1 The subsequent

literature on alignment has been

enormous, and includes seminal papers

such as the original Needleman–Wunsch

dynamic programming solution,2 the

Smith–Waterman algorithm for local

alignment,3 the introduction of affine

gaps,4 the progressive approach to

multiple alignment5 and the BLAST

tool6 that enabled genome-scale

similarity search. Recently, the literature

on basic methodology and tools

development has been growing rather

than shrinking, indicating that the

alignment problem is still not solved.

How can that be, after nearly 40 years of

research and literally hundreds of

available tools?

There are two main reasons that

alignments should remain an open

problem. First, and most important,

alignment is not a single problem but

rather a collection of many quite diverse

questions that all have in common the

search for sequence similarity. Starting

from the definition of alignment, there

are two biologically meaningful

formulations – one based on the desire to

find evolutionary relationships and one

based on the desire to find putative

functional relationships. Given some

biological sequences, the first formulation

may suggest asking for a mapping (an

edge) between every pair of letters that

are derived from the same ancestral letter

through the replication machinery of

cells. This definition, however, is both

too restrictive by disallowing point

mutations or convergent evolution, and

too permissive by not seeking to find the

truly orthologous segments between the

sequences of two species. The second

formulation may seek to find all sequence

similarities that are more significant than a

threshold above random similarity,

implying some common function.

6 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

However, this formulation needs a model

by which ‘random’ and ‘non-random’

sequences are generated – coming back

to the almost impossible challenge of

modelling sequence evolution

comprehensively. Recognising that a

single definition of alignment is not

warranted, researchers have formulated a

large number of diverse alignment

problems that address different scientific

goals. Such formulations include local

alignment, global alignment, synteny detection,

multiple alignment, alignment of proteins,

nucleotides or non-coding RNA

structures, and many other variants. A

second factor that keeps the alignment

problem alive is the exponential

expansion of biological sequence

databases – faster than Moore’s law. This

is markedly true today, when institutions

such as the NIH have recognised the

importance of comparative genomics to

interpreting the human genome and are

sequencing several whole mammalian

genomes whose main purpose will be

alignment to human.7 The premise of

these efforts is that by comparing several

genomes, we will learn about human

biology: regions that are biologically

important tend to be more constrained by

evolution and therefore more conserved

than average. Moreover, the pattern of

sequence conservation can hint at the

specific function of a region.

A brief description follows of the

different flavours of alignments. Given

two sequences x and y, the global alignment

problem asks for the optimal

transformation of one sequence into the

other with a series of edit operations –

substitutions of one letter for another, or

deletions or insertions of a substring. The

objective function is usually linear in the

(weighted) number of substitutions, with

s(a, b) given by a substitution matrix for

any pair of letters a and b, and affine in the

gaps, with an insertion or deletion of

length l being penalised by c1 + c2l. The

local alignment problem asks for all

sufficiently strong local similarities

between two sequences to be found; the

famous Smith–Waterman algorithm finds

the best-scoring local alignment in time

proportional to the product of the lengths

of two sequences, and was later extended

to find all non-intersecting local

alignments that have a score greater than a

threshold.8 [The Waterman–Eggert

algorithm8 defines as intersecting two

alignments that share a letter pairing

(xi, yj) (either a match or a mismatch),

and finds non-intersecting local

alignments in decreasing order of their

score, at an additional computational cost.

A more common approach is to use

directly the dynamic programming table

constructed from the original Smith–

Waterman algorithm, and construct local

alignments by greedily using a traceback

procedure starting from high-scoring cells

in the table.9]

The BLAST algorithm and similar

methods that were developed later

approach this problem heuristically with

subquadratic computation time in

practice. Synteny detection is the problem

of finding all sufficiently similar regions

between a pair of genomes. Synteny

detection differs from local alignment in

the filtering criterion: whereas local

aligners find all sufficiently similar pairs of

substrings in the two genomes (and

because of repeats and duplications they

usually return too much ‘junk’

homology), the goal of synteny detection

is typically to find all true orthologues,

which are pairs of regions that evolved

from the same region in the immediate

ancestor of the two species. Multiple

alignment is the problem of finding the

‘best’ way to arrange the letters of several

sequences into columns that are

composed of letters and gaps, in order to

reveal the similarity between the

sequences. This generalisation is

significantly more complicated, and even

defining an objective scoring function for

multiple alignment is very much an open

problem. Multiple alignments are usually

constructed and scored by decomposing

the problem into many pairwise

alignments.

The type of biological sequences in

question matters in the selection of

There are several
formulations of
similarity search in
biosequences, such as
local, global and
multiple alignment, and
synteny mapping

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005 7

The many faces of sequence alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

objective functions and techniques.

Proteins tend to come in large families of

related short protein sequences, which are

composed of 20 amino acids and typically

are very dissimilar to one another: fewer

than 25 per cent of the letters may match

between two related proteins. Genomes

on the other hand, are extremely long –

in the case of a mammal usually about

3 Gb long – and very dissimilar on

average, but contain islands of high

sequence identity, such as genes. Such

features dictate distinct algorithms that are

practical and accurate in each case.

In the following sections, the different

forms of alignment problems are

discussed, with emphasis on some of the

latest research in genomic sequence

comparison. A list of useful web resources

is given in Table 1.

LOCAL ALIGNMENT
Local alignment is perhaps the most

straightforward way to compare two

sequences – the method that makes the

fewest assumptions about how the

similarity should be organised: one is

asked to find all subsequences that have

similarity higher than a threshold. This

definition works reasonably well in

finding all pairs of genes or evolutionarily

constrained elements between two

genomes, transposons and other repeats,

and any other similarities. Local similarity

search is robust with respect to

rearrangements (or shuffles) between

genomes, such as inversions,

translocations or duplications.

The most widely used bioinformatics

tools in genomics have been index-based

local aligners starting with BLAST. These

tools assume that a local alignment of

interest contains a match with score

greater than a threshold between two

constant-sized words (Figure 1A). The

match is usually exact in nucleotide

searches, whereas inexact matches are

useful in finding protein homology

because some amino acids tend to be

substituted with others often. The original

BLAST tool found all such matches

rapidly by forming an index (a dictionary)

of all the k-long words (k-mers) in a

query, and searching in linear time a

database for matches to those words.

Every match would initiate an extension

to the left and to the right, to deduce if

that match is contained in a sufficiently

strong local alignment (Figure 1B). The

memory required for this procedure is

proportional to the length of the query,

and the time is roughly proportional to

the number of matches that initiate

extensions. In practice, if k is large

enough (and especially if the sequences

are masked for repeats), not too many

matches exist and the search tends to

complete rapidly.

Advances in index-based local
alignment search
The index-based alignment method has

revolutionised sequence comparison, and

Algorithms based on
search for similar
words, such as FASTA
and BLAST, have
enabled fast homology
search in large sequence
databases

Table 1: Web resources

Website Description

http://www.ncbi.nlm.nih.gov/BLAST BLAST server at NCBI
http://blast.wustl.edu WU-BLAST – a really fast version of BLAST
http://pipmaker.bx.psu.edu/pipmaker PipMaker alignments and percentage identity plots
http://genome.ucsc.edu UCSC genome browser
http://www.ensembl.org ENSEMBL genome browser
http://pipeline.lbl.gov/cgi-bin/gateway2 VISTA genome browser
http://lagan.stanford.edu LAGAN toolkit for genomic alignment
http://baboon.math.berkeley.edu/mavid AVID toolkit for genomic alignment
http://www.cs.ucsd.edu/groups/bioinformatics/GRIMM GRIMM rearrangement analysis tool
http://www.ebi.ac.uk/clustalw CLUSTALW protein aligner
http://www.drive5.com/muscle MUSCLE protein aligner
http://probcons.stanford.edu ProbCons protein aligner

8 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

Batzoglou

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

has led to an extensive literature and

numerous tools with the aim of

performing such searches more effectively

in the general case, or in specialised

settings. One significant feature of this

method is the trade-off between speed

and sensitivity in detecting homology.

This trade-off is controlled by the word

length k, and to a lesser degree by the hit

extension method, where gapless

extensions were used initially, but where

gapped extensions introduced later10 led

to improvements in sensitivity. The word

length k, however, is most significant: a

shorter word length makes it more likely

to detect a significant local alignment that

Figure 1: Index-based local alignment. (A) The BLAST-like technique for finding local homologies is based on first finding an
exact word match (more generally, a high-scoring word match) between the two sequences. (B) All word matches are
extended to the left and to the right until sequence similarity drops. The resulting local homologies that are stronger than a
cutoff are reported. (C) One way to make the BLAST-like approach more sensitive (ie missing fewer sufficiently strong
local homologies) without making it less specific, is to decrease the word length but to require two word matches in the
same shift (or nearby shifts) with respect to one another. (D) Another way to increase the sensitivity/specificity trade-off is
to require an inexact match (a match with at most one letter difference) between longer words. (E) Perhaps the most
effective way is to use patterns instead of words. A word of length 6 (a 6-mer) samples five identical positions when
compared with a shift of one position of itself. A pattern of length 8 with six significant positions can be constructed so as
to sample only three identical positions with its shift of one position. As a result, within a highly conserved region, roughly
five out of six times a failed hit in a given position (eg AGATTA v. the sequences shown) results in a failed hit in the next
position for a 6-mer; the same failure results in only roughly three out of six times in a failure in the next position when
using a pattern. (As sequence conservation drops, this difference becomes less dramatic, and gaps further complicate the
performance trade-offs.) (F) Some good individual patterns or sets of three simultaneous patterns, for similarity search in
non-coding or in protein coding positions, as suggested by rigorous computational analyses18,19

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005 9

The many faces of sequence alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

exists between the query and database,

but increases the number of matches

expected to occur at random and results

in costly examination (alignment

extension) of all the spurious matches in

order to select the significant homologies.

For example, given random sequences,

and given a gapless alignment of length

500 at 81 per cent sequence identity, a

matching k-mer of length k ¼ 8 is

expected to occur within the alignment

91.5 per cent of the times, and therefore

the majority of such alignments will be

detected by an indexing scheme that uses

8-mers. However, the same 500-long

region will have an 8-mer match with 3

million locations on average just by

chance in a random genome of length 3

Gb. In contrast, 14-mer matches will

generate just 399 matches by chance, but

will detect only 31.4 per cent of 500-long

local alignments at 81 per cent sequence

identity.11 Three of the techniques for

increasing the ratio of sensitivity

(detection of strong local alignments) to

specificity (avoidance of spurious word

matches in regions that do not align), are:

• requiring two words at a maximum

distance to one another, instead of a

single word, to initiate a match

(Figure 1C);

• matching of a k-mer of non-

consecutive positions (a pattern), which

is a strategy used in PatternHunter;12

and

• matching of inexact k-mers

(Figure 1D).

The first technique is employed by most

local aligners, such as several BLAST

variants (NCBI BLAST,10 WU-BLAST

(a very efficient variant or BLAST13);

BLASTZ,14 BLAT11 and PatternHunter).

CHAOS15 uses a variant in which chains

of seeds are first constructed, and only

sufficiently strong chains are further

examined. PatternHunter and BLASTZ

use the second technique, while CHAOS

uses the third technique.

The pattern-based approach employed

in PatternHunter is highly effective in

finding at least one match between two

homologous regions. To see why this is

true, imagine that regions x1. . .xn and

y1. . .yn are homologous with no gaps. A

k-mer samples positions xi. . .xi þ k � 1 that

should match to yi. . .yi þ k � 1. If they do

not match, the next k-mer shift,

xi þ 1. . .xi þ k, samples k – 1 identical

positions and only one different position;

the only way it can match is if the sole

mismatch was at xi. This observation

motivates the indexing of patterns, which

are k non-consecutive positions: a pattern

indexed at positions i has an overlap of

fewer than k – 1 letters with the same

pattern indexed at position i + 1, and

therefore a failure at i is less correlated

with a failure at i + 1 (Figure 1E).

Effectively, the pattern-based approach

keeps the expected number of matches

between x and y constant (actually, this

quantity decreases slightly because

patterns are longer than k-mers and so

fewer samples fit within |x| positions),

but increases the chance that at least one

match is detected. Given just one match at

the right place, BLAST-like techniques

extend it and detect homology. This

clever approach has a rather long history,

starting with FLASH16 but has received

more attention by the alignment

community recently. PatternHunter has

been used in whole-genome comparative

analyses.17 Methods that find the most

effective patterns were devised18 (Figure

1F). An additional extension of this idea is

to index multiple different patterns per

position,19 increasing sensitivity. In

general, pattern-based indexing is

significantly better than k-mer indexing in

most cases. Benefits drop when the

homology to be detected is very short

(because then the number of words

sampled is significantly smaller with long

patterns), or contains frequent gaps

(because patterns are longer and therefore

a match is more likely to be interrupted

by a gap).

An interesting problem, given the rapid

rise of available data in the form of

Several tricks can
improve the sensitivity
and specificity of
indexing a sequence
database

1 0 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

Batzoglou

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

multiple alignments, is to extend pairwise

local alignment to the comparison of a

sequence to a multiple alignment, or

profile. There are several sequence-to-

profile alignment methods, of which the

best known is PSI-BLAST.10 Such

methods are employed with great success

in distant protein homology search, for

example for protein structural

prediction.20,21 None of them, however,

focuses on high-throughput comparison

of queries to a mammalian-size reference

alignment.

GLOBAL ALIGNMENT
A global alignment between two strings

x ¼ x1. . .xm and y ¼ y1. . .yn is a

placement of gaps (or ‘-’ characters) at the

beginning or end, or between any pair of

letters of the strings, so that the resulting

padded strings are of equal length, and

pairs of gaps that map to one another are

disallowed. An equivalent formulation

involves a matrix of dimension

(m + 1) 3 (n + 1) where in the x-axis lies

the sequence 0x1. . .xm from left to right,

in the y-axis lies the sequence 0y1. . .yn
from top to bottom, and an alignment is

any path from (0,0) to (m,n) using only

down (+0, +1), right (+1, +0) and down–

right (+1, +1) moves, corresponding to

gaps in x, gaps in y and mappings between

pairs of letters, respectively. Sometimes an

additional restriction applies, of never

following down with right, or right with

down, leading to slightly faster algorithms.

Yet another equivalent formulation uses a

finite automaton with three states (Figure

2A) that generate two sequences

simultaneously: state M emits the next

two symbols xi and yj, state I emits the

next symbol xi, and state J emits the next

symbol yj. A sequence of states such that

the number of M plus I states equals m,

and the number of M plus J states equals

n, corresponds to a global alignment of x

and y. (Transitions between I and J would

correspond to gaps in one sequence

followed by gaps in the other, and are

often omitted.)

One of the earliest global alignment

methods was the Needleman–Wunsch

dynamic programming algorithm that

computes the optimal edit distance

between two strings.2 The original

procedure required cubic time and is not

used in practice but simple dynamic

programming procedures (see for instance

Gusfield9) require time and space

proportional to the product of the lengths

of the two sequences. Later, algorithms

were devised that use only linear

space.23,24 The Smith–Waterman

algorithm3 computes the best local

alignment between two strings, which is

defined as the best global alignment of any

two substrings of the strings. Another

important extension was the introduction

of a more elaborate gap model: gap

lengths in alignments of actual biological

sequences do not follow a geometric

distribution but rather have a tendency to

be several nucleotides long. The affine gap

model scores gaps so as to reflect this

biological feature, penalising a gap of

length l with a constant Copen plus a linear

term l 3 Cextend.
4 Transitions in the

3-state finite automaton can be labelled

with scores reflecting edit-distance

scoring parameters (Figure 2A), so that

the best-scoring state path for two

sequences corresponds to their optimal

alignment under affine gaps.

Most of the early alignment algorithms

were designed primarily for application to

protein sequences. The recent

proliferation of available DNA sequences

and complete genomes of related

organisms underlined two problems with

methods based on dynamic-programming

computation of edit distance. First, such

methods run in quadratic time in the

lengths of the sequences, and therefore are

too inefficient for application to long

genomic sequences. Second, genomic

sequences of related organisms are often

similar in short, functionally important

regions that are located in the midst of

much longer regions of little similarity.

The affine gap model is especially

unsuccessful in correctly aligning short

conserved regions because the positive

score gained by similarity within such

regions cannot counterbalance the

The standard edit
distance formulation of
sequence alignment
leads to quadratic-time
dynamic programming
algorithms

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005 1 1

The many faces of sequence alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

negative score caused by the long flanking

gaps. This challenge reflects the fact that

affine gaps, like linear gaps, still imply a

geometric distribution of gap lengths,

while in biological reality longer gaps

occur much more frequently, notably

because of insertions of transposable

elements. Double-affine gaps,

corresponding to a 5-state finite

automaton that includes ‘long’ gap states

I9 and J9, or logarithmic gaps and other

more involved models are meaningful but

less commonly used.

Fast global alignment
The shortcomings in computational

efficiency of classical methods motivated

the recent development of several

efficient (sub-quadratic) global alignment

algorithms designed for application to

distantly related sequences. The PipMaker

system25 based on a gapped version of

BLAST10 finds and visualises a set of

significant local alignments between a pair

of long genomic sequences. Several global

alignment systems run in subquadratic

time: MUMmer,26 DBA,27 GLASS,28

WABA,29 AVID30 and LAGAN,31

among many others. Most of these

methods are based on a chaining strategy of

first finding and chaining words or local

alignments between the two sequences,9

thereby creating a set of anchors; these

anchors cut the large alignment problem

into many smaller ones. The basic idea is

illustrated in Figure 3. Chaining works

Fast global aligners are
based on chaining of
local alignments

�����

� �

�����

� �

��
���������

���������

�� ��

�� ��

�
�

��	�
�����	�
����
�	����

������ ��������

�
������

	
�����

�����

�����

�
������

	
�����

�����

Figure 2: A finite automaton for global alignment. (A) The state diagram of a 3-state automaton
that scores an alignment under the (single) affine gap model. State M emits two letters, xi and
yj, and advances to positions i + 1 and j + 1. State I emits symbol xi and a gap, and advances to
the next position i + 1 in x. Similarly for state J. Gaps are opened at every transition from M to
I or J, and incur a gap penalty equal to d + el, where l is the length of the gap. Letter matches
and mismatches are scored according to the substitution function s. (B) The finite automaton
can be transformed into an equivalent hidden Markov model (HMM) with a transformation of
scoring parameters into log-odds ratios.22 Intuitively, � controls the gap initiation penalty, �
controls the gap extension penalty (the precise relation between these values and d, e is
somewhat complicated), and M emits symbols with substitution scores that reflect the log-
likelihood ratio of two letters being aligned in related sequences, versus each letter occurring
independently. The Viterbi algorithm for this HMM produces the most likely alignment, which
is equivalent to the highest-scoring alignment of the automaton in (A)

1 2 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

Batzoglou

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

well in practice in addressing both

shortcomings of pure dynamic-

programming approaches, namely

insufficient speed and intolerance of long

gaps. Concerning speed, chaining relies

on three steps: (1) exact word matching

or index-based local alignment, which is

much faster than the time required for full

dynamic programming; (2) construction

of the optimal chain of local hits, a

procedure that can be done in time

0(n log n) where n is the number of hits,

using an extension of the Longest

Increasing Subsequence algorithm; and

(3) potential computation of alignments in

the regions in between the chained

pieces, which give rise to much smaller

alignment problems. Concerning

accuracy in dealing with long gaps,

chaining relies precisely on the fact that

DNA sequence similarity comes in islands

of highly conserved (evolutionarily

constrained) regions, flanked by less

conserved pieces that are typically much

Local alignments can be
chained in time
O(n log n) using an
extension of the longest
increasing subsequence
algorithm

Figure 3: High-throughput global alignment. (A) Methods that align long genomic sequences usually rely on first quickly
finding a set of local alignments between two sequences, and then constructing a monotonic chain of those alignments. (B)
After the chain is constructed, most methods align the regions in between; the original global alignment problem has been
effectively cut into many smaller ones and most of the search space is excluded. (C) Global aligners that follow the
methodology outlined in (A) and (B) miss rearrangements such as inversions that are common within megabase-long
orthologous regions in mammals. More recent methods, such as SLAGAN or CHAINNET, heuristically pick such events
while still filtering out the majority of spurious local alignments. (D) To construct an alignment between multiple
sequences, practical systems use the progressive strategy of constructing partial alignments, or profiles, in the order of a
tree connecting the sequences. The tree can follow the phylogenetic relationship of the sequences, or simply be a
hierarchical clustering according to similarity – the second method may produce more accurate alignments in practice,
because it performs the easier alignments first, thus propagating fewer errors to later steps

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005 1 3

The many faces of sequence alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

longer in higher organisms. This property

makes it reasonable to first find the highly

similar regions and construct a map based

on them, and only later deal with the

potentially unalignable regions in-

between. Chaining-based global aligners

do not suffer from the shortcomings of

the affine gap function. Instead, by their

hierarchical nature they impose a two- or

multi-level gap penalty where long gaps

are encouraged in order to detect short

homologies.

SYNTENY MAPPING AND
REARRANGEMENTS
While local alignment is a way to

compare two genomes that does not make

any assumptions about the specific

evolutionary relationship between them,

synteny detection is an organisation of

local alignments into a coherent global

picture. The aim is to map the

orthologous blocks – the regions that are

assumed to be derived from the same

region in the genome of the immediate

ancestor of the two species. Early on the

notion of orthology mapping was

introduced,32 and it was estimated that

there are roughly 180 conserved segments –

pairs of regions with conserved gene

order without rearrangements – between

the human and mouse genomes. This

notion was later generalised to synteny

blocks, which are regions that can be

converted into conserved segments by

local rearrangements, the micro-

rearrangements.33 Moreover, with the

abundance of genomic data it became

clear that in addition to genes, conserved

non-coding regions are important for

detecting and comparing synteny blocks.

Synteny detection would be easy were

it not for the abundance of local

alignments between non-orthologous

locations. Such alignments are mainly the

result of segmental duplications and

repeats that copy regions within a

genome. These events, coupled with gene

loss and sequence divergence in general,

deletions, and genomic rearrangements of

various sizes from the tiny reversals of a

few hundred nucleotides to whole-

chromosome fissions and fusions, make

synteny detection challenging but

necessary, because otherwise the picture

of orthology between two moderately

distant genomes is cluttered with an

enormous amount of local alignment

noise.

Many approaches exist for synteny

mapping, and most are based on the same

general scheme of first obtaining a set of

local alignments between two genomes,

and then grouping those alignments into

clusters so that each spans a specific region

of a chromosome in each species. The

comparison of human and mouse was a

first opportunity for large-scale synteny

mapping, and three methodologies were

introduced in this context.17,33,34 In the

first approach, a local aligner was first

applied (PatternHunter) to find more than

0.5 M bidirectional-best local similarities

(coding and non-coding), the anchors;

those were grouped into maximal syntenic

segments whenever they occurred in the

same pair of chromosomes, in the same

order and orientation; finally, those

segments were grouped into larger syntenic

blocks by concatenating adjacent segments

that may be shuffled with respect to one

another.17 In the second approach, the

GRIMM-synteny algorithm, the same

anchors were arranged in a graph where

two anchors were connected by an edge if

their distance was smaller than a threshold

(the Manhattan distance was used, which

is the sum of distances in each genome);

then, synteny blocks were formed

according to the connected components

of this graph that spanned regions longer

than a threshold.33 The third approach

used a different local aligner for speed

(BLAT) to form anchors, grouped

anchors according to proximity and same

order and orientation, and mapped each

mouse contig to human according to the

strongest group of anchors. All methods

largely agreed on the long syntenic

blocks, and differed on their ability to

handle local shuffles, and on the

resolution of synteny detected. As was

pointed out,33 as the length of a syntenic

block decreases, the block becomes less

Synteny mapping, in its
most general form, is a
filtering criterion over
all local similarities

Approaches that
attempt to map
rearrangements are
more ambitious, with
the ultimate goal of
reconstructing the
order of immediate
ancestor of two species

1 4 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

Batzoglou

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

reliable because it may be the result of

spurious local alignments and sequencing

errors.

The rat genome35 provided an

opportunity to perform mammalian-scale

synteny detection across multiple

genomes – in this case human, mouse and

rat. The GRIMM methodology was

extended to this setting, to find all

pairwise and three-way blocks, and to

reconstruct a putative ancestral rodent.36

Additional methods that were developed

in that context include Pash, a very

efficient and parallelisable method that

finds synteny between two regions by

forming groups of k-mers that lie on the

same diagonal of the alignment matrix of

the two sequences, implying the same

‘shift’ between the two genomes,37 and a

progressive local/global technique based

on first finding syntenic mouse-rat blocks,

and then mapping those to human.38

Micro-rearrangements complicate the

alignment task within a syntenic block.

They have been observed to be abundant

between species such as human and

mouse33 and therefore cannot be ignored

during global alignment. The concept of

glocal alignment has been introduced39 to

provide a happy median between an

unfiltered collection of all local

alignments between two regions, and a

strict global alignment that would miss

events such as local inversions (Figure 3C)

and transpositions. A glocal map is a chain

of local alignments that is monotonic in one

sequence so that the coordinates of

successive local alignments are increasing,

while it can jump around in the second

sequence to accommodate

rearrangements. The first sequence is

typically the more interesting, or better-

quality sequence. Shuffle-LAGAN39

computes such chains in O(n log n) time

where n is the number of local

alignments, by an extension of the

Eppstein–Galil algorithm,40 and

subsequently performs global alignment

on the consistent parts of the chain. This

procedure unfortunately does not

properly model the sizes or end-points of

rearrangement events – conceivably, a

stochastic pair-CFG (context-free

grammar):22 could be used for that

purpose, under the strong assumption that

rearrangement events are nested, but that

would result in very slow parsing

algorithms. The Shuffle methodology was

later extended to perform alignment of

draft-against-finished sequence, and as a

basis for global synteny detection between

multiple genomes.41 Another approach

that provides filtered sets of local

alignments in a global map, while

respecting local rearrangements, is the

chain-and-net approach.42 This approach

is hierarchical, which makes sense

biologically because rearrangements most

likely happen in a hierarchical fashion

from very short inversions of a few

hundred nucleotides, up to whole-

chromosome fusions and fissions. The

program CHAINNET forms chains of

local alignments that are ordered in both

sequences; then, it picks chains iteratively

and adds them to the global map, each

time making sure to throw out the parts

of a chain that intersect with nucleotides

already covered by previously accepted

chains in a genome of interest (eg

human). This way, each nucleotide of the

genome of interest is covered by at most

one nucleotide of the second genome, but

shuffles of any size are accommodated.

Based on this method, an analysis of

micro-rearrangements within the mouse

genome relative to human revealed a very

high frequency of such events. For

example, two inversions per Mb of mouse

genome were detected (excluding

combinations of inversion and

duplication), of median size 814 bp.42 It is

important to note that the regional

frequency of such events varies

considerably across the genomes.

MULTIPLE SEQUENCE
ALIGNMENT
Multiple sequence alignments are a

natural extension of two-sequence

comparison, and a powerful way to study

biological sequences. They are essential

for the computation of local rates of

evolution, giving a quantitative measure

Recently it was
realized that
microarrangements are
abundant in genomic
DNA

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005 1 5

The many faces of sequence alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

of the strength of evolutionary constraints

and the functional importance of local

regions.43,44 Even weak similarity across

several sequences reveals important

conserved biological features.45 Recently,

several methods have emerged for

detecting regions that evolve slower than

neutral on the basis of a multiple genomic

sequence alignment.46–48

Progressive alignment
Multiple sequence alignments are

considerably more difficult to compute

than pairwise alignments. For

straightforward dynamic programming

solutions, each additional sequence

multiplies the time and memory required

to compute the optimal alignment by a

factor proportional to the length of the

sequence. Formally, the problem is NP-

complete.49 For that reason heuristic

approaches are usually applied, of which

the most widely used is progressive

alignment. This approach works by

successively constructing pairwise

alignments,5,50–52 providing at the same

time a hierarchical clustering of the

sequences (Figure 3D). At each

progressive alignment step, two multiple

alignments, which are typically

compressed as profiles, are aligned by a

procedure that treats each as a sequence

and therefore inserts entire gap columns

between two columns (Figure 3D). The

result is a combined multiple alignment

that can be passed to the next step. The

best-known system based on progressive

multiple alignment is perhaps

CLUSTALW.53 Other multiple

alignment systems that are mostly

targeting proteins or short DNA

sequences, and are based on progressive

alignment, include MULTALIGN,54

MULTAL,55 PRRP,56 T-COFFEE,57

MAFFT,58 MUSCLE,59 Align-m60 and

PROBCONS.61

Scaleable multiple sequence
alignment
Until recently, multiple global alignment

of large genomic regions was challenging

owing to the enormous search space

involved. Methods such as CLUSTALW

have been suitable for aligning proteins,

but are too time-inefficient for sequences

longer than a few thousand nucleotides.

In the past couple of years, several

scaleable methods have been developed:

MLAGAN is a method for large-scale

multiple alignment based on a progressive

LAGAN alignment step applied in the

order of the given phylogenetic tree of

the sequences.31 MAVID is a method that

can automatically construct a

phylogenetic tree, and can also use gene

predictions to help in constructing the

chain of anchors. It uses ancestral

reconstruction and therefore always aligns

single ancestor sequences rather than

profiles, making the method fast;

however, for the same reason it does not

incorporate affine gap penalties.62 TBA is

a promising alternative method that

introduces the concept of a blockset, which

is a region of similarity between a subset

of the sequences, and constructs a

multiple alignment composed of blocksets

that are aligned with the MULTIZ local

aligner.63 The block set idea ameliorates a

common problem with multiple aligners,

of padding deep alignments with huge

numbers of gaps in place of lineage-

specific transpositions or deletions; those

gaps potentially affect scoring during

alignment, or subsequent interpretation of

the alignment.

Scoring function
Besides efficiency, generalising the

objective function from pairwise to

multiple alignments is also a challenge.

Two of the main scoring methods are

sum-of-pairs and consensus. According to

the sum-of-pairs method, the score of a

multiple alignment is the (weighted) sum

of scores of all the induced pairwise

alignments.64,65 In consensus, each position

of the alignment is assigned a letter

(usually the most frequent letter in that

position) and the overall multiple

alignment score is the sum of pairwise

alignment scores of each sequence to the

consensus. A weighted combination of

the two methods is employed in the

Multiple alignment tools
usually decompose the
problem into several
pairwise alignment
steps

Scoring a multiple
alignment as well as
detecting conserved
regions within it, are
open research problems

1 6 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

Batzoglou

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

ReAligner system.66 DIALIGN67 uses an

interesting segment-to-segment objective

function. A comprehensive analysis of

alignment scoring functions has revealed

significant differences with respect to the

resulting alignment accuracy.68

Consistency-based scoring
DIALIGN, T-COFFEE and PROBCONS

use the concept of consistency to improve

the objective function of multiple

alignment. The basic idea of consistency is

that during a progressive alignment step

that aligns two sequences x and y, errors

can be avoided by seeking to align pairs of

letters that will consistently map to the

same positions of a third sequence z in

subsequent alignment steps (Figure 4).

Consistency was first introduced to

identify anchor points for reducing the

search space of a multiple alignment.69 A

mathematically elegant reformulation of

consistency in terms of Boolean matrix

multiplication was later given70 and

implemented in the program MALI,

which builds multiple alignments from dot

matrices.71 T-COFFEE builds an

alignment library by merging consistent

CLUSTALW global and LALIGN72 local

pairwise alignments to form three-way

alignments, which are assigned weights by

percentage identity. Then, the score for

aligning xi to yj is defined to be the sum of

the weights of all alignments in the library

containing that aligned residue pair.

Maximum expected accuracy
As explained,22 the finite automaton of

Figure 2, with some small technical

modifications such as adding a start and a

stop state, can be made into a hidden

Markov model (HMM) that generates

alignments. This model is called a pair-

HMM because it generates a pair of

sequences instead of a single one, and

parameterises a probability distribution

over all possible alignments of all possible

pairs of sequences. The parameters of the

model include emission probabilities of

pairs of letters from M, or single letters

from I and J, and transition probabilities

between the three states. All standard

HMM algorithms can be used – for

example, the Viterbi procedure can

compute the most likely alignment of two

given sequences, and Expectation

Maximisation can be used for

unsupervised training of parameters.

Viterbi, for instance, corresponds exactly

to edit-distance dynamic programming,

modulo a parameter transformation. In

addition, alternative ways to find an

alignment based on the HMM exist. In

particular, the overall likelihood of the

alignment may not be the best criterion,

because this likelihood is bound to be

extremely low – there is little chance to

uncover the ‘true’ alignment between

two sequences. Therefore, partial credit

may be warranted for alignments that

agree with the ‘true’ one in most

predictions of letter-to-letter mappings. It

has been proposed22,73 to use the criterion

of maximum expected accuracy to generate

an alignment, where accuracy is defined

as the number of correct letter-to-letter

correspondences. This can be done via

dynamic programming with similar time

complexity as the standard Viterbi or

dynamic programming procedures (in

practice, about three times slower).

PROBCONS adopted this objective

Figure 4: Consistency in progressive
alignment. When aligning x to y, we may be in
doubt as to whether to map a given letter or
domain xi to yj or yj0 . In the context of
progressive alignment that will later involve a
third sequence z, we may ‘ask’ z whether it
prefers one of the two possibilities. If xi maps
to zk and zk maps to yj, the xi – yj score
should be boosted

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005 1 7

The many faces of sequence alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

function, and demonstrated that such

alignments are significantly more accurate

in protein comparison than standard

methods. In addition, PROBCONS applied

a probabilistic consistency transformation that

intuitively re-estimates the probability

that two letters xi and yj match, by

heuristically summing over all possible

third letters zk in a third sequence, the

posterior probabilities that triplets xi, yj
and zk match, given that x, y and z align.

This transformation is inspired by the

consistency methods that appear in

programs such as T-COFFEE, and

increases accuracy further. These ideas

have not been applied yet to large-scale

nucleotide alignment, or to chaining,

rearrangement detection and other

multisequence mapping problems.

Aligning alignments
When performing progressive alignment,

one issue that is usually slipped under the

rug is that the procedures used for

aligning two intermediate profiles do not

actually find the optimal alignment of

these two profiles. Indeed, surprisingly,

the problem of aligning two alignments

with affine-gap sum-of-pairs scoring is

NP-complete.74,75 An exact algorithm has

been proposed75 that in practice performs

much better than exponential time, but is

still unfortunately too slow for genome-

wide use. Most of the practical multiple

aligners use local heuristics to estimate the

gap-opening counts. Such heuristics often

result in obviously wrong behaviour (ie

alignments where a human eye can spot

funny-looking gap placements); an

exposition of different approaches is

beyond the scope of this review.

Block-based formulations
Recognising that the definition of a global

multiple alignment as a monotonic map

between all sequences is limited, richer

formulations of alignment have emerged

recently. The partial order alignment (POA)

approach models a multiple global

alignment as a directed acyclic graph that

includes blocks of similarity and regions of

non-homology.75 The threaded block set

approach, which is partially implemented

in the TBA program, defines a multiple

alignment to be a set of blocks of

similarity between subsets of the

sequences that are ordered differently

(threaded) according to each sequence.63

The A-Brujin graph (ABA) approach

further generalises POA to allow an

alignment to be represented by a graph

that can include cycles, allowing for the

inclusion of repeated structures such as

domains within each sequence.77 Such

richer structures may complicate both the

computation and the intuitive

interpretation of alignments, but are

better able to handle the rich

organisation of homology present in

biological sequences.

CONCLUSION AND
FUTURE DIRECTIONS
The next few years will provide a unique

challenge and opportunity to alignment

research. One of the immediate goals of

the genomics community is to sequence

and align a large number of species in

order to study their biology and evolution

through comparative sequence analysis. In

addition, new technologies promise

extremely cheap sequencing methods that

will enable us to sequence almost

everything during the next decade. The

enormity of such data will be dizzying,

and alignment will be the GoogleTM of

genomics – finding all interesting

connections between diverse sequences.

Resources will be developed that will

enable seamless navigation through

alignments of a given gene, protein,

domain or other functional element, in a

given phylogenetic scope such as

mammals, vertebrate or eukaryotes,

revealing the evolutionary history of the

element – when did it arise, when did it

assume biological function, in which

subtrees did the function get altered or

lost, what is the duplication/loss history of

the element? The goal will be to trace the

evolution of every single letter in our

genomes, between different species as

well as across human populations through

history. Computational reconstruction of

1 8 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

Batzoglou

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

the genomes of ancestral species will be

achieved with high accuracy on the

nucleotide level,78 bringing us one step

closer to Jurassic Park as well as

elucidating our evolution at the molecular

level. A few years ago, several unsolved

problems in alignment were proposed,79

which fell into five topics: (1) improved

pairwise alignment with a statistical basis;

(2) improved alignment-based gene

prediction; (3) effective multiple genomic

sequence alignment; (4) better alignment

browsers; and (5) rigorous methods for

evaluating the accuracy of alignment.

Since then lots of progress has been made,

especially in directions (2), (3) and (4).

Directions (1) and (5) are more resistant:

sequence evolution is complicated and

difficult to model probabilistically and

therefore rigorous yet practical statistical

methods for alignment, and objective

criteria for evaluation of alignments, are

really hard to obtain.

Looking to the next few years, the

following are just some of the problems

that are significant to address:

• As suggested,79 methods to evaluate

alignment accuracy. This goes at the

core of the problem: which regions

are alignable, and what is a correct

alignment?

• Methods that can align neutrally

evolving DNA between multiple

distant species, whenever the

sequences have not diverged enough

in principle to look non-orthologous.

Perhaps one way to achieve that will

be to populate the phylogenetic tree

with more and more sequences, so

that distant alignments are facilitated

with many intermediate, easier ones.

• A definition of alignability – at what

point is it no longer possible to do

meaningful sequence alignment. Or

rather, at what point can one conclude

that two sequences are no longer

related?

• Aligning under different models in

different parts of the sequences,

according to existing annotations of

features such as genes, or by using

automatic methods that recognise the

evolutionarily constrained, neutral and

plain unalignable parts.

• A rigorous way to identify breakpoints

of rearrangement events in the context

of a multiple species comparison, to

perform synteny detection, and to

reconstruct the order of the ancestral

genome. Again, a highly populated

tree of sequences will make this

problem easier in principle

• Methods to analyse, navigate and

query multiple alignments in order to

identify the alignable parts, the

conserved parts, the regions and

subtrees that evolve faster or slower,

or other interesting features, and at

different granularities.

• Databases that can store, query

intelligently and augment on the fly

extremely large and interconnected

alignments – for instance 1,000 or

more vertebrate genomes. One of the

major scientific goals of the next

decade is to obtain an accurate and

complete library of genomic evolution

in the form of multi-species

alignments, which will be used by

biologists and bioinformaticians to

understand the history and

mechanisms of life at the nucleotide

level.

Acknowledgments

The author wishes to thank Chuong B. Do for

helpful suggestions and edits to the document, and

NSF, NIH and the Sloan Foundation for support.

References

* Papers of particular interest published within
the period of this review.

** Papers of extreme interest published within the
period of this review.

1. Levenshtein, V. I. (1966), ‘Binary codes
capable of correcting deletions, insertions, and

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005 1 9

The many faces of sequence alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

reversals’, Cybernetics Control Theory, Vol. 10,
pp. 707–710.

2. Needleman, S. B. and Wunsch, C. D. (1970),
‘A general method applicable to the search for
similarities in the amino acid sequence of two
proteins’, J. Mol. Biol., Vol. 48, pp. 443–453.

3. Smith, T. F. and Waterman, M. S. (1981),
‘Identification of common molecular
subsequences’, J. Mol. Biol., Vol. 147, pp.
195–197.

4. Gotoh, O. (1982), ‘An improved algorithm for
matching biological sequences’, J. Mol. Biol.,
Vol 162, pp. 705–708.

5. Feng, D. F. and Doolittle, R. F. (1987),
‘Progressive alignment of amino acid
sequences as a prerequisite to correct
phylogenetic trees’, J. Mol. Evolution, Vol. 25,
pp. 351–360.

6. Altschul, S. F., Gish, W., Miller, W. et al.
(1990), ‘Basic local alignment search tool’,
J. Mol. Biol., Vol. 215, pp. 403–410.

7. URL: www.genome.gov/12511858

8. Waterman, M. S. and Eggert, M. (1987), ‘A
new algorithm for best subsequence alignments
with application to tRNA–rRNA
comparisons’, J. Mol. Biol., Vol. 197, pp. 723–
728.

9. Gusfield, D. (1997), ‘Algorithms on Strings,
Trees, and Sequences’, Cambridge University
Press, New York.

10. Altschul, S. F., Madden, T. L., Schoffer, A. A.
et al. (1997), ‘Gapped BLAST and PSI–
BLAST: A new generation of protein database
search programs’, Nucleic Acids Res., Vol. 25,
pp. 3389–3402.

11. **Kent, W. J. (2002), ‘BLAT – the BLAST-
like alignment tool’, Genome Res., Vol. 12, pp.
656–664.

12. **Ma, B., Tromp, J. and Li, M. (2002),
‘PatternHunter: Faster and more sensitive
homology search’, Bioinformatics, Vol. 18, pp.
440–445.

13. **URL: http://blast.wustl.edu/

14. **Schwartz, S., Kent, W. J., Smit, A. et al.
(2003), ‘Human–mouse alignments with
BLASTZ’, Genome Res., Vol. 13, pp.
103–107.

15. *Brudno, M. and Morgenstern, B. (2002),
‘Fast and sensitive alignment of large genomic
sequences’, in ‘Proceedings of the
Bioinformatics Conference (CSB)’, IEEE
Computer Society, pp. 138–147.

16. Califano, A. and Rigoutsos, I. (1993),
‘FLASH: A fast look-up algorithm for string
homology’, in ‘Proceedings of the 1st
International Conference on Intelligent
Systems for Molecular Biology’, AAAI Press,
Palo Alto, CA, pp. 56–64.

17. **Waterston, R. H., Lindblad-Toh, K.,

Birney, E. et al. (2002), ‘Initial sequencing and
comparative analysis of the mouse genome’,
Nature, Vol. 420, pp. 520–562.

18. **Buhler, J., Keich, U. and Sun, Y. (2003),
‘Designing seeds for similarity search in
genomic DNA’, in ‘Proceedings of the
Seventh Annual International Conference on
Research in Computational Molecular Biology
(RECOMB)’, ACM Press, New York, pp.
67–75.

19. **Sun, Y. and Buhler, J. (2004), ‘Designing
multiple simultaneous seeds for DNA similarity
search’, in ‘Proceedings of the Eighth Annual
International Conference on Research in
Computational Molecular Biology
(RECOMB)’, ACM Press, New York, pp.
76–84.

20. Jones, D. T. (1999), ‘Protein secondary
structure prediction based on position-specific
scoring matrices’, J. Mol. Biol., Vol. 292, pp.
195–202.

21. McGuffin, L. J. and Jones, D. T. (2003),
‘Improvement of the GenTHREADER
method for genomic fold recognition’,
Bioinformatics, Vol. 19, pp. 874–881.

22. Durbin, R., Eddy, S., Krogh, A. and
Mitchison, G. (1997), ‘Biological Sequence
Analysis: Probabilistic Models of Proteins and
Nucleic Acids’, Cambridge University Press,
Cambridge.

23. Hirschberg, D. (1975), ‘A linear space
algorithm for computing maximal common
subsequences’, Comm. ACM, Vol. 18, pp.
341–343.

24. Myers, E. W. and Miller, W. (1988), ‘Optimal
alignments in linear space’, Computing Appl.
Biosci., Vol. 4, pp. 11–17.

25. Schwartz, S., Zhang, Z., Frazer, K. A. et al.
(2000), ‘PipMaker – a web server for aligning
two genomic DNA sequences’, Genome Res.,
Vol. 10, pp. 577–586.

26. Delcher, A. L., Kasif, S., Fleischman, R. et al.
(1999), ‘Alignment of whole genomes’, Nucleic
Acids Res., Vol. 27, pp. 2369–2376.

27. Jareborg, N., Birney, E. and Durbin, R.
(1999), ‘Comparative analysis of noncoding
regions of 77 orthologous mouse and human
gene pairs’, Genome Res., Vol. 9, pp. 815–824.

28. Batzoglou, S., Pachter, L., Mesirov, J. et al.
(2000), ‘Human and mouse gene structure:
Comparative analysis and application to exon
prediction’, Genome Res., Vol. 10, pp. 950–
958.

29. Kent, W. J. and Zahler, A. M. (2000),
‘Conservation, regulation, synteny, and introns
in a large-scale C. briggsae–C. elegans genomic
alignment’, Genome Res., Vol. 10, pp. 1115–
1125.

30. *Bray, N., Dubchak, I. and Pachter, L. (2003),

2 0 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

Batzoglou

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

‘AVID: A global alignment program’, Genome
Res., Vol. 13, pp. 97–102.

31. **Brudno, M., Do, C. B., Cooper, G. M. et
al. (2003), ‘LAGAN and Multi-LAGAN:
Efficient tools for large-scale multiple
alignment of genomic DNA’, Genome Res.,
Vol. 13, pp. 721–731.

32. Nadeau, J. H. and Taylor, B. A. (1984),
‘Lengths of chromosomal segments conserved
since the divergence of man and mouse’, Proc.
Natl Acad. Sci., Vol. 81, pp. 814–818.

33. **Pevzner, P. A. and Tesler, G. (2003),
‘Genome rearrangements in mammalian
evolution: Lessons from human and mouse
genomic sequences’, Genome Res., Vol. 13, pp.
13–26.

34. *Couronne, O., Poliakov, A., Bray, N. et al.
(2003), ‘Strategies and tools for whole-genome
alignments’, Genome Res., Vol. 13, pp. 73–80.

35. **Gibbs, R. A., Weinstock, G. M., Metzker,
M. L. et al. (2004), ‘Genome sequence of the
Brown Norway rat yields insights into
mammalian genome evolution’, Nature, Vol.
428, pp. 493–521.

36. **Bourque, G., Pevzner, P. A. and Tesler, G.
(2004), ‘Reconstructing the genomic
architecture of ancestral mammals: Lessons
from human, mouse, and rat genomes’,
Genome Res., Vol. 14, pp. 507–516.

37. *Kalafus, K. J., Jackson, A. R. and
Milosavljevic, A. (2004), ‘Pash: Efficient
genome-scale sequence anchoring by
positional hashing’, Genome Res., Vol. 14, pp.
672–678.

38. *Brudno, M., Poliakov, A., Salamov, A. et al.
(2004), ‘Automated whole-genome multiple
alignment of rat, mouse, and human’, Genome
Res., Vol. 14, pp. 685–692.

39. **Brudno, M., Malde, S., Poliakov, A. et al.
(2003), ‘Glocal alignment: Finding
rearrangements during alignment’, Special
Issue on the Proceedings of the ISMB 2003,
Bioinformatics, Vol. 19, pp. 54i–62i.

40. Eppstein, D., Galil, Z., Giancarlo, R. and
Italiano, G. F. (1992), ‘Sparse dynamic
programming I: Linear cost functions’,
J. ACM, Vol. 39, pp. 546–567.

41. *Sundararajan, M., Brudno, M., Small, K. et
al. (2004), ‘Chaining algorithms for alignment
of draft sequence’, in ‘Proceedings of the 4th
Workshop on Algorithms in Bioinformatics
(WABI)’ 14th–17th September, Bergen,
Norway.

42. **Kent, W. J., Baertsch, R., Angie Hinrichs,
A. et al. (2003), ‘Evolutions cauldron:
Duplication, deletion, and rearrangement in
the mouse and human genomes’, Proc. Natl
Acad. Sci. USA, Vol. 20, pp. 11484–11489.

43. Simon, A., Stone, E. A. and Sidow, A. (2002),
‘Inference of functional regions in proteins by

quantification of evolutionary constraints’,
Proc. Natl Acad. Sci. USA, Vol. 99, pp. 2912–
2917.

44. **Thomas, J. W., Touchman, J. W.,
Blakesley, R. W. et al., (2003), ‘Comparative
analyses of multi-species sequences from
targeted genomic regions’, Nature, Vol. 424,
pp. 788–793.

45. Göttgens, B., Barton, L. M., Chapman, M. A.
(2002), ‘Transcriptional regulation of the stem
cell leukemia gene (SCL) – comparative
analysis of five vertebrate SCL loci’, Genome
Res., Vol. 12, pp. 749–759.

46. *Cooper, G. M. and Sidow, A. (2003),
‘Genomic regulatory regions: Insights from
comparative sequence analysis’, Curr. Opin.
Genetics Develop., Vol. 13, pp. 604–610.

47. **Cooper, G. M., Brudno, M., Stone, E. A. et
al. (2004), ‘Characterization of evolutionary
rates and constraints in three mammalian
genomes’, Genome Res., Vol. 14, pp. 539–548.

48. **Margulies, E. H., Blanchette, M., NISC
Comparative Sequencing Program, et al.
(2003), ‘Identification and characterization of
multi-species conserved sequences’, Genome
Res., Vol. 13, pp. 2507–2518.

49. Wang, L. and Jiang, T. (1994), ‘On the
complexity of multiple sequence alignment’,
J. Comput. Biol., Vol. 1, pp. 337–348.

50. Waterman, M. S. and Perlwitz, M. D. (1984),
‘Line geometries for sequence comparisons’,
Bull. Math. Biol., Vol. 46, pp. 567–577.

51. Taylor, W. (1987), ‘Multiple sequence
alignment by a pairwise algorithm’, CABIOS,
Vol. 3, pp. 81–87.

52. Higgins, D. and Sharpe, P. (1988),
‘CLUSTAL: A package for performing
multiple sequence alignment on a
microcomputer’, Gene, Vol. 73, pp. 237–244.

53. Thompson, J. D., Higgins, D. G. and Gibson,
T. J. (1994), ‘CLUSTAL W: Improving the
sensitivity of progressive multiple sequence
alignment through sequence weighting,
position-specific gap penalties and weight
matrix choice’, Nucleic Acids Res., Vol. 22, pp.
4673–4680.

54. Barton, G. J. and Sternberg, M. J. E. (1987),
‘A strategy for the rapid multiple alignment of
protein sequences’, J. Mol. Biol., Vol. 198, pp.
327–337.

55. Taylor, W. (1988), ‘A flexible method to align
large numbers of biological sequences’, J. Mol.
Evol., Vol. 28, pp. 161–169.

56. Gotoh, O. (1996), ‘Significant improvement
in accuracy of multiple protein sequence
alignments by iterative refinement as assessed
by reference to structural alignments’, J. Mol.
Biol., Vol. 264, pp. 823–838.

57. **Notredame, C., Higgins, D. G. and
Heringa, J. (2000), ‘T-Coffee: A novel method

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005 2 1

The many faces of sequence alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

for fast and accurate multiple sequence
alignment’, J. Mol. Biol., Vol. 302, pp. 205–
217.

58. *Katoh, K., Misasa, K., Kuma, K. and Miyata,
T. (2002), ‘MAFFT: A novel method for rapid
multiple sequence alignment based on fast
Fourier transform’, Nucleic Acids Res., Vol.
30(14), pp. 3059–3066.

59. **Edgar, R. C. (2004), ‘MUSCLE: Multiple
sequence alignment with high accuracy and
high throughput’, Nucleic Acids Res., Vol.
32(5), pp. 1792–1797.

60. *Van Walle, I., Lasters, I. and Wyns, L.
(2004), ‘Align-m – a new algorithm for
multiple alignment of highly divergent
sequences’, Bioinformatics, Vol. 20, pp. 1428–
1435.

61. **Do, C. B., Brudno, M. and Batzoglou, S.
(2004), ‘ProbCons: Probabilistic consistency-
based multiple alignment of amino acid
sequences’, Genome Research, February 2004,
(in press) extended abstract in ‘Abstract in the
Nineteenth National Conference on Artificial
Intelligence AAAI’, 25th–29th July, San Jose,
CA, p. 703.

62. **Bray, N. and Pachter, L. (2004), ‘MAVID:
Constrained ancestral alignment of multiple
sequences’, Genome Res., Vol. 13, pp. 693–
699.

63. **Blanchette, M., Kent, J. W., Riemer, C. et
al. (2004), ‘Aligning multiple genomic
sequences with the threaded blockset aligner’,
Genome Res., Vol. 14, pp. 708–715.

64. Carillo, H. and Lipman, D. (1988), ‘The
multiple sequence alignment problem in
biology’, SIAM J. Appl. Math., Vol. 48, pp.
1073–1082.

65. Altschul, S. and Lipman, D. (1989), ‘Trees,
stars, and multiple sequence alignment’, SIAM
J. Appl. Math., Vol. 49, pp. 197–209.

66. Anson, E. and Myers, E. (1997), ‘ReAligner: A
program for refining DNA sequence multi-
alignments’, in ‘Proceedings of the First
Annual International Conference on
Computational Molecular Biology’, ACM
Press, New York, pp. 9–16.

67. Morgenstern, B., French, K., Dress A. and
Werner, T. (1998), ‘DIALIGN: Finding local
similarities by multiple sequence alignment’,
Bioinformatics, Vol. 14, pp. 290–294.

68. Edgar, R. C., Sjolander, K. A. (2004),

‘Comparison of scoring functions for protein
sequence profile alignment’, Bioinformatics, Vol.
20(8), pp. 1301–1308.

69. Gotoh, O. (1990), ‘Consistency of optimal
sequence alignments’, Bull. Math. Biol., Vol.
52, pp. 509–525.

70. Vingron, M. and Argos, P. (1991), ‘Motif
recognition and alignment for many sequences
by comparison of dot matrices’, J. Math. Biol.,
Vol. 218, pp. 34–43.

71. Vingron, M. and Argos, P. (1989), ‘A fast and
sensitive multiple sequence alignment
algorithm’, Comput. Appl. Biosci., Vol. 5(2),
pp. 115–121.

72. Huang, X. and Miller, W. (1991), ‘A time-
efficient, linear space local similarity
algorithm’, Adv. Appl. Math., Vol. 12, pp.
337–357.

73. Holmes, I. and Durbin, R. (1998), ‘Dynamic
programming alignment accuracy’, J. Comput.
Biol., Vol. 5(3), pp. 493–504.

74. *Ma, B., Wang, Z. and Zhang, K. (2003),
‘Alignment between two multiple alignments’,
in ‘Proceedings of the 14th Symposium on
Combinatorial Pattern Matching’, Lecture
Notes in Computer Science Vol. 2676,
Springer, Berlin, pp. 254–265.

75. *Kececioglu, J. and Starrett, D. (2004),
‘Aligning alignments exactly’, in ‘Proceedings
of the Eighth Annual International Conference
on Research in Computational Molecular
Biology (RECOMB)’, ACM Press, New
York, pp. 85–96.

76. **Lee, C., Grasso, C. and Sharlow, M. F.
(2002), ‘Multiple sequence alignment using
partial order graphs’, Bioinformatics, Vol. 18, pp.
452–464.

77. **Raphael, B., Zhi, D., Tang, H. and
Pevzner, P. (2004), ‘A novel method for
multiple alignment of sequences with repeated
and shuffled elements’, Genome Res.. Vol. 14,
pp. 2336–2346.

78. Blanchette, M., Green, E. D., Miller, W.,
Haussler, D. (2004), ‘Reconstructing large
regions of an ancestral mammalian genome in
silico’, Genome Research, Vol. 14, pp. 2412–
2423.

79. **Miller, W. (2000), ‘Comparison of genomic
sequences: Solved and unsolved problems’,
Bioinformatics, Vol. 17, pp. 391–397.

2 2 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN B IOINFORMATICS . VOL 6. NO 1. 6–22. MARCH 2005

Batzoglou

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/6/288918 by guest on 17 April 2024

