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There is no silver bullet –
a guide to low-level data
transforms and normalisation
methods for microarray data

Abstract
To overcome random experimental variation, even for simple screens, data from multiple

microarrays have to be combined. There are, however, systematic differences between arrays,

and any bias remaining after experimental measures to ensure consistency needs to be

controlled for. It is often difficult to make the right choice of data transformation and

normalisation methods to achieve this end. In this tutorial paper we review the problem and a

selection of solutions, explaining the basic principles behind normalisation procedures and

providing guidance for their application.

INTRODUCTION
Microarray technology provides a

powerful tool for large-scale gene

expression measurements. Typical

application areas include genomics

research, quantitative systems biology and

the more traditional screening for

candidate genes. Microarray data are the

end-product of a fairly intricate

experimental process,1–3 and adequate

analysis must meet the challenge of

separating true biological signals from

experimental bias and random

fluctuations. A wide range of both

commercial and freely available software

has been developed to address this need.

The choice between the large number of

different analysis methods available,

however, can be daunting. Unfortunately,

there is no ‘silver bullet’: no single ‘catch-

all’ method solves the problem of

appropriate microarray data analysis. The

right path will depend on the biological

problem examined, the implemented

experimental design and even the

microarray type.

Box 1: Experimental design
Efficiency of data analysis begins with good experimental design. It must be

emphasised that it is always advisable to consult both a statistician and someone with

experience conducting similar microarray experiments before embarking on sample/

data collection. Much effort and resources have been wasted by inappropriately

designed experiments, for which an analyst can often only provide a ‘post mortem’ of

what has gone wrong in experimental design. Essentially, good design considers all of

the following issues:

• A clearly defined biological question/hypothesis much facilitates analysis. For

exploratory studies: how will biological patterns be distinguished from technical
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ones? What independent means of validation are there?

• A sensible experimental arrangement must be chosen. For example, a dye swap

design addresses dye bias effects, while the use of a reference sample in one

channel aids normalisation and comparison across slides.2,4,5 If it is likely that

additional data will be collected, a reference design may be indicated simply by

the increased flexibility it gives.

• Can identification and control of systematic experimental errors be aided? This

could, for example, mean additional measurements, eg of collected sample

amounts, or involve the liberal use of calibration points, such as control probes

and exogenous spikes.6

• When a large number of probes are expected to differ between samples the use of

‘housekeeping genes’ and/or exogenous spikes will actually be critical for

subsequent analysis (also see discussion in main text). This is likely, for example,

when very different samples are assessed, or when small or ‘boutique’ arrays are

used that feature a set of probes already preselected for their involvement in a

particular biological process. A large number of control probes must then be

placed randomly across the array to allow normalisation and subsequent analysis.

• An optimal number of biological or technical replicate samples7 must be assessed,

as dictated by the experimental situation, observed noise levels (eg from pilot

experiments) and the available budget.8 While the optimal replication strategy

may strongly vary between different experiments, as a rule of thumb, a minimum

of five biological replicates are typically required for robust inference.9

• Data collection in compliance with the Minimal Information About a

Microarray Experiment (MIAME) is increasingly recommended or required for

publication.10,11

Box 2: Platform options – too many flavours of chips
There are a variety of microarray platforms available, the technical properties of

which affect choices in subsequent data analysis. In the remainder of this paper,

microarray ‘slide’ shall mean the support of the microarray probes, no matter

whether that is a traditional ‘microscope glass slide’, or not.

Platforms can be categorised by their probe type. There are three distinct types of

microarray probes – cDNA probes, long oligonucleotide probes and short

oligonucleotide probes. Long oligonucleotides (typically 50- to 70-mers) are thought

to mimic the properties of cDNA probes offering high sensitivity and good

specificity, while giving better probe homogeneity.12 Oligonucleotide probes can

target specific regions of a gene and hence allow the detection of splice variants.

For both cDNA and long oligonucleotide arrays, typically only one probe is

designed for each gene that is to be probed (splice variants are an additional

complication that will not be addressed here). Short oligonucleotide arrays are

typified by the GeneChipTM platform (Affymetrix). The Affymetrix system involves

the in situ manufacture of short oligos on a glass surface using photolithography. The

initial method for doing this was limited to the production of 25-mers and this has

meant that Affymetrix has adopted a design approach for their arrays specific to the

use of such short probes.13,14 For each gene, a unique region is identified, then a

series of 11–20 complementary probes spanning this region are synthesised. These
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complementary probes are referred to as ‘Perfect Match’ probes (PM). Each PM

probe is then paired with a ‘Mismatch’ probe (MM), which has the same sequence as

the PM except the central base is replaced with a mismatched nucleotide. The

complete set of PM and MM probe pairs for each gene is referred to as a ‘probe set’.

The process of inferring a single

estimate of gene expression from a probe

set has recently become an area of very

active research.15,16 Results of a

standardised benchmark of competing

methods are available.17 Ideally, this

process of probe summarisation should be

done simultaneously with normalisation.

In practice, for a lack of truly integrated

methods, most laboratories normalise

across chips before probe summarisation.

Microarray data analysis is often, for

convenience, split into several distinct

steps, such as: (i) image analysis, (ii) data

preprocessing/normalisation and (iii)

higher-level analysis and interpretation.

While fully automated microarray image

analysis is still an area of active research,

most laboratories use the software that

came with their scanner, with operators

contributing to random error.8 The

myriad of tools available for higher-level

analysis reflects the wide range of

applications for microarray experiments.

Approaches include exploratory

techniques, such as all forms of

clustering,18,19 algorithms for

classification,20–22 statistical hypothesis

tests (eg for differential expression23 and

fitting more complex probabilistic models

– Bayesian networks,24 hierarchical

models,8,25 . . .). All analyses, though,

have in common the need to identify and

remove experimental bias from

measurements before further study. It

should be emphasised that correct

normalisation is essential for meaningful

data analysis, as distortions through

artefacts can be significantly larger than

the biological signals of interest. This

tutorial provides an introduction to the

underlying concepts of common

approaches to this problem, and gives a

first guide to choosing between the

available microarray data transformation

and normalisation methods for this task.

Where appropriate, we point to

corresponding packages from the open-

source Bioconductor software

repository.26

THE CHALLENGE OF
MICROARRAY DATA
NORMALISATION
Experimental sources of
unwanted signal variation
The experimental process leading to the

signals that comprise microarray data is

fairly complex. There is a large variety of

sources of systematic global differences

between measurements that reflect

differences in:

• sample preparation, eg time from

surgical removal until cryo-

preservation;

• RNA extraction efficiency between

samples;

• overall amplification yield, if an

amplification protocol is employed;

• overall labelling yield;

• overall hybridisation efficiency and

washing stringency;

• incorporation efficiency for different

dyes during direct labelling;

• fluorescence gain of the excitation/

detection system for different dyes.

Further sources of variation include

specific effects of the manufacturing

process, like differences in

• characteristics of individual printing

pins;

• properties of specific probe source

plates;
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• batch effects (slides, buffers, etc).

More complex distortions can be

caused by

• sequence-specific label incorporation

bias;

• spatial variation of hybridisation

efficiency and washing stringency;

• non-linear effects, such as non-linear

dye fluorescence response and

interaction between dyes (cross-talk

and quenching) – these can give rise

to complex confounding of effects,

eg bias in the differential signal as a

function of the average intensity.

Last but not least, it certainly should be

mentioned that both the operator and the

date of the experiment are significant

sources of variation. The general difficulty

of combining data from different

laboratories is well appreciated. Technical

effects often dominate biologically

relevant signals in multi-centre studies

(Figure 1).

Control for technical variation
by conservative normalisation
Ideally, the sources of these non-

biological variations would be determined

and accounted for, or minimised at the

experimental stage. Often, this is only

partly possible and, to allow comparison

of different measurements, the remaining

differences need to be controlled for

during analysis, a process called

normalisation.

Normalisation procedures remove

unwanted variances from data by

exploiting and enforcing known or assumed

invariances of the data – in an exact,

averaging or probabilistic manner, and

with varying degrees of robustness

towards outliers. Considering the

complexity of the problem, it is not

surprising that new normalisation

methods are being introduced

continuously. Instead of providing a list of

the many methods available, we here

restrict ourselves to a review of basic

Figure 1: Affymetrix lung cancer data from Harvard (grey) and Michigan (black). The plot in
principal components space27 shows that, despite the laboratories’ use of standardised
commercial microarray platforms (HGU95a and HuGeneFL chips), the main source of
variation maps to the laboratory in which the data have been generated, indicating that
differences in sample collection protocols and the microarrays used dominated the biological
effect of interest
Reproduced with permission from Kluwer Academic Publishers, ‘Methods of Microarray Data
Analysis IV’, 2005, Shoemaker, J. S. and Lin, S. M. (Eds), ‘Making sense of lung carcinomas gene
expression data: Integration and analysis of two Affymetrix platform experiments’, Xiwu Lin
et al., Fig. 3
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concepts. In the next section, several

well-known methods and the invariances

they require are discussed. The

fundamental assumptions of normalisation

methods differ and are satisfied by real

data sets to varying degrees.

Consequently, a different normalisation

method must be chosen appropriate for

any specific experiment. Moreover, as the

‘correct’ result of a microarray experiment

is usually not known, it is very difficult to

assess the relative performance of

normalisation methods on realistic data

sets. In selecting an appropriate

normalisation procedure for a particular

experiment, a guiding principle is hence

the conservative nature of the method –

the lower the number of parameters, the

less arbitrary. While removal of complex

artefacts may require procedures with a

higher number of parameters, it is easy to

unwillingly introduce novel artefacts

either by over-fitting or as a result of

failure in separating biological from

technical patterns. Satisfying all

assumptions of the employed methods,

the most conservative approach should

hence be chosen that removes the

dominant artefacts.

NORMALISATION
METHODS – COMMON
APPROACHES
In a discussion of several common

normalisation approaches, we will

highlight situations in which their

assumptions are not met, and different

methods need to be applied. We start

with the most conservative procedures.

Rescaling, robustness,
‘housekeeping genes’ and spike
controls
A very conservative, simple and popular

approach is the rescaling of each sample

by a constant. This controls for overall

differences in signal strength as, for

example, caused by different extraction or

labelling yields. Instead of rescaling by the

mean signal intensity, often the median

signal intensity is used, giving

considerable robustness to outliers. Even

this simple method, however, makes a

critical assumption, namely, that the

median signal intensity will be invariant

between samples. A popular variant of this

approach assumes invariance of a subset of

genes (typically called ‘housekeeping

genes’), rescaling by their median signal

intensity. Although there is good reason

to doubt that such a set of invariant genes

exists in general (eg some studies have

found the presumed ‘housekeeping’ gene

GAPDH to be quite variable28,29), there

may be sets of genes that are non-

differentially expressed across the samples

of a particular experiment. Nevertheless,

there are cases where true biological

differences between samples violate all of

the above assumptions. Consider, for

example, the massive generic down-

regulation of gene expression in samples

of dying tissue. This is a typical example

of an experimental situation in which it is

very difficult to find an appropriate

normalisation procedure. It furthermore

highlights the value of considering such

issues at the stage of experimental design.

If known quantities of spike RNA are

added to the sample before extraction,

standardised sample amounts are ensured,

and the slides contain a high number of

spike probes, then the spike signals can be

used for normalisation, as these can now

be assumed to be invariant. If such spikes

are not available, all one can do is hope

that the technical variation in signal

intensity is smaller than the biological

effect examined, and work on the

unnormalised data.

Explicit error models, robust fit
by iterative trimmed least
squares
For subsequent analysis, it is often

desirable to decouple random error and

signal intensity. It is very common to

transform microarray data to a log-scale

before further analysis. A logarithmic

transform certainly collapses the original

range of the signal, which can span over

five orders of magnitude. Moreover, a

log-transform decouples a random
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multiplicative error e� from the true signal

intensity � in the measurement y:

y ¼ �e� ) logy ¼ log� þ � (1)

It is well known that microarray data

variance increases with signal intensity,

which is in line with such a model. It is

likely that the source of this variance is

the hybridisation process itself, as it

cannot be explained by instrument error

(Figure 2).30

A purely multiplicative model,

however, unrealistically predicts vanishing

measurement error for very small signals,

whereas in truth, there will always be

some background noise. This can be seen

in log–log plots of same–same

comparisons (Figure 3). On a linear scale

(left panel), the variance increases with

signal intensity. On logarithmic scale

(right panel), the variance is

approximately constant for medium and

high signal intensities, in line with the

purely multiplicative noise model in

equation (1). The measured variance for

low-intensity signals, however, is larger

than expected.

A more realistic error model allows for

both additive and multiplicative error

terms:

y ¼ a þ b�e� þ � (2)

Here, the constants a and b model a global

background and gain, respectively. Just as

the log-transforms decouples the true

signal � from the error term e� in model

(1), the asinh transform will decouple the
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Figure 3: Data after affine transform normalisation. The two panels show the same data, which are from a same–same
comparison. The left panel shows the data on a linear scale, while the right panel shows the effect of a log2-transform
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Figure 2: Increasing measurement variance
with higher hybridisation signal30

Reproduced with permission from Brown,
C. S., Goodwin, P. C. and Sorger, P. K.
(2001), ‘Image metrics in the statistical
analysis of DNA microarray data’, Proc. Natl
Acad. Sci. USA, Vol. 98, pp. 8944–8949.
Copyright (2001) National Academy of
Sciences, USA

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 6. NO 1. 86–97. MARCH 2005 9 1

Tutorial section

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/6/1/86/288923 by guest on 09 April 2024



true signal � from the error terms e� and �
in (2). As shown in Figure 4, it is

approximately linear for small values; for

larger ones it is well approximated by a

logarithmic transform. Figure 5 shows

how this model more successfully

decouples variance and signal intensity in

real data.

To apply model (2) for normalisation,

the parameters a and b need to be

obtained by fitting the model to the data.

The measurements for all the genes of a

sample share the same parameters in this

model. Once the parameters have been

obtained for each sample, the differences

in global background and gain can be

corrected for. Obviously, differentially

expressed genes or technical outlier

measurements should not affect this fit.

The iterative trimmed least-squares fit

implemented in the vsn package31

(available from the Bioconductor

repository) will identify a subset of non-

differentially expressed non-outlier genes

with a high breakdown point of 50 per

cent. This means that up to 50 per cent of

genes can be differentially expressed or

technical outliers without this affecting

the fit arbitrarily, making the result robust.

In contrast to many other methods, this

procedure even works reliably if the

differentially expressed genes introduce a

strong asymmetry, eg if they are mostly

up-regulated (rather than having an even

mix of up- and down-regulation).

It should be emphasised that this still is

a very conservative approach, using only

two parameters per sample. Alternatives
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Figure 4: Comparison of an asinh- and a log2-transform. Note the
deviation for values close to zero
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Figure 5: Data after variance stabilising normalisation (vsn). Both panels: on ‘asinh-scale’ the much-inflated fluctuations at
low signal intensities have disappeared. The right panel shows the traditional ‘M(A)’-plot, with M the difference and A the
mean of the two channels – artefacts are more obvious here. The dark-grey long-dashed line shows a Loess smoother,
giving an indication of local trends in the plot. An ‘S’-shaped distortion is clearly seen
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to global, constant background and gain

terms could either fit a slowly varying

function as background or gain terms or

attempt to measure these directly.

Modelling spatial variation without

additional measurements has the

disadvantage of greatly increasing the

number of parameters of the model.

Hence, there has been a strong interest in

obtaining approximate measurements for

‘local’ background intensities, eg by

measuring the fluorescence intensity in

the slide area between the spotted probes.

Unfortunately, there are two sources of

background fluorescence observed on

microarrays: (a) smears that cover both

the probes and the area between probes,

and (b) non-specific binding of

fluorescent material to the area between

the spotted probes, only. If the former

dominates, then estimation of local

background intensities by measuring

fluorescence between probes makes a lot

of sense, and correcting for this local

background will improve data quality. On

the other hand, if non-specific binding to

only the area between spots dominates,

such a correction is inappropriate and can

create artefacts, eg ‘negative intensities’.

Many laboratories find that this is indeed

the case, and measurements suggest that

the background obtained from fitting a

model such as (2) actually corresponds to

the self-fluorescence of the substrate slide

before hybridisation.30

The M(A)-plot of Figure 5 clearly

shows an ‘S’-shaped technical artefact

which has not been removed by this

transformation. The methods discussed

next can sometimes be used to remove

such complex distortions.

Detrending of the signal
difference as a function of the
signal average
‘Smile’- or ‘S’-shaped trends in the

difference M between samples as a

function of the average signal intensity A

are commonly observed in microarray

data (Figure 5). A possibly cause for such

trends may be differences in the non-

linear fluorescence response of dyes. In a

comparison of similar samples, ideally,

there should be no such distortions. A

very flexible but rather aggressive

approach hence enforces this invariance

M(A) ¼ 0 by computing an ‘average

trend’ in order to subtract it, eg by means

of a Loess smoother, which is available

from the loess function in the statistics

environment R. While most bias in the

trend of M(A) can indeed be removed this

way, this normalisation procedure is not

conservative, having a large number of

parameters to be obtained from the data,

as well as an arbitrary parameter setting

the ‘window length’ for the smoothing

algorithm. This flexibility of the transform

can become a problem when a researcher

fails to detect that the assumption
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Figure 6: The left panel shows the M(A) plot for a microarray experiment comparing liver
tissue with a reference sample comprising a mix of liver, kidney and testis tissue.32 The trend,
shown by the solid line (a Loess smoother), reverses under dye swap (right panel). Two
replicate experiments each confirmed this picture
Reproduced with permission from Coombes, K. (2002), ‘Biology-driven clustering of
microarray data: Applications to the NCI60 data set’, CAMDA, Durham, NC, USA
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M(A) ¼ 0 does not hold for biological

reasons. This can, for example, be the case

if a large number of genes are

asymmetrically differentially expressed

(Figure 6). Simulations by Coombes and

coworkers32 have shown that such

observed non-linear trends in M(A) can

be explained if 20 per cent of genes are

specifically expressed in only one of the

samples, which is, for example, easily

perceivable for comparisons of rather

different tissue types. Dye swap

experiments can help detect such

situations (Figure 6) to avoid

indiscriminate application of, for example,

a Loess smoother to detrend M(A).

Obviously, inappropriate detrending

would both remove biological signal and

create further technical artefacts.

Equalisation of signal
distributions
While the M(A) detrending described

above can deal with a large variety of

distortions, it is computationally

expensive and its focus on expression

difference does not lend itself well to

situations with large numbers of

(unpaired) samples.33 A different

approach, which is similarly generic, deals

directly with the signal distributions of

individual samples. For sufficiently similar

samples, or if there are no strong

asymmetries expected in differential

expression, it is valid also to expect similar

signal distributions for all samples, and to

enforce this assumption by a

normalisation transform. This process can

be depicted by quantile–quantile (Q–Q)

plots (Figure 7) – data are normalised by

projection so that their Q–Q plot to a

reference distribution gives a straight line.

The reference distribution can be that of

an arbitrary array, or a constructed/

artificial one. A particularly efficient

implementation34 has made this approach

very popular as part of the affy package for

the analysis of Affymetrix slides in

Bioconductor. This direct mapping,

however, is not robust in the tails of

distributions, where data tend to be

sparse. An approach fitting natural cubic

splines to quantile data33 seems to resolve

this issue in a computationally efficient

way.

Like the transform discussed in the

previous section, quantile normalisation is

not a conservative transform and should

not be used in situations where the signal

distributions of samples are expected to

differ, eg when asymmetric differential

expression of many genes. Figure 8 shows

that the signal distribution in male and

female fruitflies differs, reflecting true
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Figure 7: Quantile–quantile (Q–Q) plots for rather different distributions (left panel) and for
similar distributions (right panel). In Q–Q plots, the quantiles of one sample are graphed as a
function of the same quantiles of the other, allowing direct comparison of, eg, the 25th
percentile of the two samples (which marks the value which is larger than 25 per cent of the
data in each sample, respectively). Identical distributions will hence give a straight line in Q–Q
plots. For samples of equal size, a Q–Q plot can easily be generated as scatter plot of the
sorted samples to be compared
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biological differences. Quantile

normalisation of these samples would not

only remove this biological signal but also

introduce further technical artefacts.

Spatial detrending
Well-designed microarrays have replicate

probes distributed in a random order

across the slide surface to allow separation

of spatial artefacts from biological signal.

Unfortunately, many early arrays (from

both academic and commercial providers)

have not followed this design criterion for

reasons of manufacturing convenience.

For these older-generation slides – which

are still widely employed – computational

approaches are prone to fail, separating

spatial artefacts and biological signal.

Where possible, one may try to alleviate

this problem by hybridising every other

replicate slide rotated by 1808. The most

stringent designs are currently

implemented in the most recent high-

density arrays with multiple redundant

probes per gene randomly distributed

across the slide (eg as available from

Affymetrix or Nimblegen).

In modern microarrays, spatial trends in

signal intensity are usually a sign of

technical artefacts, such as caused by

unequal hybridisation conditions or

washing. For example, one can sometimes

clearly identify the areas beneath the

probe inlet and outlet holes of an

Affymetrix slide (Figure 9). Traditionally,

Loess smoothers are computed in order to

estimate and subtract spatial trends. While

this can reduce variance between

replicates, recent calibration experiments

suggest that spatial variation of unspecific

binding cannot be corrected this way

(Kreil et al., manuscript in preparation).

The original design of a two-channel

DNA microarray is actually quite

ingenious, as it already provides

approximate self-normalisation for spatial

variation of hybridisation and washing

efficiency by performing the

measurements of samples to be directly
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Figure 9: Spatial trends
in the signal intensities
measured on an
Affymetrix slide. The
brighter areas beneath
the probe inlet and
outlet holes (arrows)
can be clearly
identified.35

Reproduced with
permission from Ptitsyn,
A. A. (2002),
‘Topological adjustments
to the Genechip
expression values’,
CAMDA, Durham, NC,
USA
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Figure 8: Q–Q plots of two female fruitfly samples (left) show similar signal distribution,
while a comparison of samples from a male and a female fly consistently show distinct
differences (right)
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compared in a single probe that is subject

to the same local reaction conditions. To

extend the sensitivity of screens, however,

replicate slides are needed. In addition,

more complex experiments require the

joint analysis of multiple samples. In

either case, modern work needs

normalisation between slides, not just

between channels. It hence seems natural

to expect future microarrays to feature

novel experimental designs that support

between slide normalisation directly,

rather than rely on purely computational

approaches.

SUMMARY AND OUTLOOK
We have explained how modern

microarray experiments, which require

the combination of data from multiple

slides, rely on removing unwanted

technical variation between sample

measurements, a process called

normalisation. We have then given an

introduction to common concepts and

principles employed by current

normalisation methods, including the

assumptions that they exploit and that they

rely on. It is essential that a normalisation/

data-transformation method appropriate

to the properties of the experiment in

question is chosen. We have discussed the

strengths and limitations of several popular

approaches, providing guidance for their

use. The normalisation of microarray data

is still a very active area of research, with

frequent novel interactions between

microarray design and analysis methods

(cf. probe summarisation, see Box 2). Just

as the original design of two-channel

microarrays had technical features

reducing the impact of unwanted

experimental variance, it can be expected

that future microarray designs together

with advanced models will further

improve the ability to normalise data

across samples. Such progress will allow an

even more quantitative and sensitive

approach to modern applications in the

clinical and biological sciences.
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