
Irena Spasic

is a postdoctoral research

associate in the School of

Chemistry and the Manchester

Interdisciplinary Biocentre at

the University of Manchester.

Her research interests include

biomedical text mining,

machine learning and

bioinformatics.

Sophia Ananiadou

is co-director of the UK

National Centre for Text

Mining and a Reader in

Computer Science at the

University of Salford. Her

research interests are in the

areas of computational

terminology and biomedical

text mining.

John McNaught

is a Lecturer in the School of

Informatics at the University of

Manchester and an Associate

Director of the UK National

Centre for Text Mining. His

research interests include

information extraction and

computational lexicography.

Anand Kumar

is Alexander von Humboldt

research fellow in the Faculty

of Medicine at the University of

Leipzig and a member of the

Institute for Formal Ontology

and Medical Information

Science at Saarland University

in Saarbrücken. His research

interests include medical and

biomedical knowledge

representation, data models

and ontologies.

Keywords: text mining,
ontology, terminology,
information extraction,
information retrieval

Irena Spasic,

School of Chemistry,

The University of Manchester,

Sackville Street,

PO Box 88,

Manchester M60 1QD,UK

Tel: þ44 (0)161 306 4414

Fax: þ44 (0)161 306 4556

E-mail: i.spasic@manchester.ac.uk

Text mining and ontologies in
biomedicine: Making sense of
raw text
Irena Spasic, Sophia Ananiadou, John McNaught and Anand Kumar
Date received (in revised form): 7th June 2005

Abstract
The volume of biomedical literature is increasing at such a rate that it is becoming difficult to

locate, retrieve and manage the reported information without text mining, which aims to

automatically distill information, extract facts, discover implicit links and generate hypotheses

relevant to user needs. Ontologies, as conceptual models, provide the necessary framework

for semantic representation of textual information. The principal link between text and an

ontology is terminology, which maps terms to domain-specific concepts. This paper

summarises different approaches in which ontologies have been used for text-mining

applications in biomedicine.

INTRODUCTION
Text is the predominant medium for

information exchange among experts.1

The volume of biomedical literature is

increasing at such a rate that it is difficult

to efficiently locate, retrieve and manage

relevant information without the use of

text-mining (TM) applications. In order

to share the vast amounts of biomedical

knowledge effectively, textual evidence

needs to be linked to ontologies as the

main repositories of formally represented

knowledge. Ontologies are conceptual

models that aim to support consistent and

unambiguous knowledge sharing and that

provide a framework for knowledge

integration.2 An ontology links concept

labels to their interpretations, ie

specifications of their meanings including

concept definitions and relations to other

concepts.3 Apart from relations such as is-

a and part-of, generally present in almost

any domain, ontologies also model

domain-specific relations, eg has-location,

clinically-associated-with and has-

manifestation are relations specific for the

biomedical domain. Therefore, ontologies

reflect the structure of the domain and

constrain the potential interpretations of

terms. As such, ontologies can be used to

support automatic semantic interpretation

of textual information (Figure 1), and thus

provide a basis for sophisticated TM.

Table 1 lists some popular biomedical

ontologies. Many such ontologies exhibit

differing degrees of overlap, exhaustivity

and specificity and indeed differing views

over conceptual space. Therefore, TM

applications that rely on multiple

ontologies also need to include methods

for mapping between such ontologies.4

These methods, together with other

biomedical applications (including TM)

that rely on the use of ontologies, would

benefit from a standard ontology language

(eg using standard initiatives such as

RDF5 and OWL6). Still, even when a

single standardised ontology is used, it is

not always straightforward to link textual

information with ontology owing to the

inherent properties of language. Two

major obstacles are: (1) inconsistent and

imprecise practice in the naming of

biomedical concepts (terminology),7 and

(2) incomplete ontologies as a result of

rapid knowledge expansion.

Nonetheless, a comprehensive body of

knowledge is currently stored in

biomedical ontologies, which can be

utilised in numerous ways by TM

applications. Moreover, the results of TM

can be curated and used to facilitate
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update of biomedical ontologies (Figure

1). In this paper the focus is on only the

former aspect of the relation between text

mining and ontologies, ie problems,

existing practice and prospects of using

ontologies for different TM applications

are reviewed. The section ‘Terminology’

focuses on the problem of linking text to

ontologies. The section ‘Text mining’

provides an introduction to TM and

discusses two of its principal tasks:

information retrieval and information

extraction. The ways in which ontologies

can be used to support these applications

are discussed separately in the following

sections: ‘Information retrieval’ and

‘Information extraction’. The latter

section is divided into three subsections.

The first subsection deals with named

entity recognition as a key step in

information extraction. The following

two subsections discuss information

extraction systems depending on the

degree to which they rely on the use of

ontologies. Since many TM applications

resort to the use of machine learning

methods as a way of tackling the

complexity of both natural language and

biomedical knowledge, it is explained

how ontologies can be used for this

purpose in the section ‘Machine learning’.

The conclusion completes the paper.

TERMINOLOGY
The principal link between text and an

ontology is a terminology, which aims to

map concepts to terms (Figure 2). A term

is defined as a textual realisation of a

specialised concept, eg gene, protein,

Figure 1: Ontologies provide machine-readable descriptions of biomedical concepts and their
relations. Linking domain-specific terms, ie textual representation of these concepts, to their
descriptions in the ontologies provides a platform for semantic interpretation of textual
information. An explicit semantic layer supported by the use of ontologies allows text to be
mined for interpretable information about biomedical concepts as opposed to simple
correlations discovered by mining textual data using statistical information about co-
occurrences between targeted classes of biomedical terms. The knowledge extracted from
text using advanced TM can then be curated and used to update the content of biomedical
ontologies, which currently lag behind in their attempts to keep abreast of new knowledge
owing to its rapid expansion

Table 1: Selected generic biomedical ontologies

Name URL

UMLS http://www.hlm.nih.gov/research/umls/
SNOMED http://www.snomed.org/snomedct/
GENIA http://www-tsujii.is.s.u-tokyo.ac.jp/�genia/
GALEN http://www.opengalen.org/about.html
TaO http://imgproj.cs.man.ac.uk/tambis/
GO http://www.geneontology.org/

OBO (Open Biomedical Ontologies) provides a more comprehensive list of ontologies and
is available at http://obo.sourceforge.net/
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disease. The introduction of a new term

presupposes the establishment of a new

concept which points to a specific area of

the domain knowledge space.8,9 This

process assumes the mapping of a term to

a concept in an ontology. This mapping is

crucial for semantic interpretation in TM

applications and is far from trivial. The

main problems arise from the fact that

there is often no one-to-one

correspondence between concepts and

terms. In practice, TM applications are

faced with the problems of term variation

and term ambiguity, which make the

integration of information available in

text and ontologies difficult.

Term variation originates from the

ability of a natural language to express a

single concept in a number of ways. For

example, in biomedicine there are many

synonyms for proteins, enzymes, genes,

etc. Having six or seven synonyms for a

single concept is not unusual in this

domain.10 The probability of two experts

using the same term to refer to the same

concept is less than 20 per cent.11 In

addition, biomedicine includes

pharmacology, where numerous

trademark names refer to the same

compound (eg Advil, Brufen, Motrin,

Nuprin and Nurofen all refer to ibuprofen).

Term ambiguity occurs when the same

term is used to refer to multiple concepts.

Ambiguity is an inherent feature of

natural language. Words typically have

multiple dictionary entries and the

meaning of a word can be altered by its

context. Sublanguages, as the languages

confined to specialised domains,12

provide a context which generally reduces

the level of ambiguity. However,

biomedicine encompasses a plethora of

subdomains, which is an additional cause

for the high level of ambiguity in

biomedical terminology. For example, the

term promoter refers to a ‘binding site in a

DNA chain at which RNA polymerase

binds to initiate transcription of messenger

RNA by one or more nearby structural

genes’ in biology, while in chemistry it

denotes a ‘substance that in very small

amounts is able to increase the activity of

a catalyst’. In addition, acronyms are

extensively used in biomedicine (a new

acronym is introduced in every five to ten

abstracts)13 and they are known to be

highly ambiguous (.80 per cent of

acronyms are ambiguous, the average

number of possible interpretations being

.15).14 For example, AR could be

expanded to any of the following terms:

Androgen Receptor, AmphiRegulin, Acyclic

Retinoid, Agonist–Receptor, Adrenergic

Receptor, etc.

Furthermore, text is not the only origin

of ambiguity in biomedicine. Ambiguity

is inherent to the field, because the

evolution of species gave rise to many

homologues and analogues. For instance,

Figure 2: Conceptual relations reflect the connections between the
concepts denoted by the given terms. These relations may be general
relations commonly found in every domain (e.g. is-a, part-of or similarity
relation) or they can be confined to a specific domain (e.g. activation of
receptors by hormones). Conceptual relations are encoded in
ontologies. Term ambiguity and term variation represent specialisation of
general lexical relations, namely synonymy and homonymy. These
relations exist on the lexical level and do not describe the relations
between the underlying concepts

Biomedical terminology

Text mining challenges
in biomedicine
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NFKB2 denotes a family of two

individual proteins with separate

identifiers in Swiss-Prot. These proteins

are homologues belonging to different

species, human and chicken.15

TEXT MINING

Text mining tasks

Originally, TM was defined as the

automatic discovery of previously

unknown information by extracting

information from text.1 However, in the

biomedical community, the term TM is

often reduced to the process of

highlighting (ie retrieving or extracting)

small nuggets of relevant information

from large collections of textual data.

Generally, TM is used to collectively

denote computer applications that aim to

aid experts in making sense of large

amounts of text by distilling information,

extracting facts, discovering implicit links

and generating hypotheses relevant to user

needs. TM typically consists of:

• information retrieval (IR), which

gathers and filters relevant

documents;16

• information extraction (IE), which

selects specific facts about prespecified

types of entities and relationships of

interest;17

• data mining (DM), which is used to

discover unsuspected associations

between known facts.18 For example,

mining of textual data succeeded in

linking magnesium deficiency to

migraine, a correlation which was later

experimentally confirmed.19

Text processing and
representation

The techniques for IR, IE and textual

DM can be applied to either raw or

structured text (Figure 3) with different

success rates. Raw text is digitally

represented as a sequence of characters.

Such plain text representation is usually

processed to add structure explicitly in a

machine-readable form. The initial step in

automatic text processing is tokenisation,20

which identifies the basic textual units

which need not be further decomposed.

Even this basic problem cannot be

resolved straightforwardly by relying on

white spaces and punctuation marks as

explicit delimiters (eg [3H]R1881 is a

single token).

Tokenisation is typically followed by

some form of lexical processing, which may

include part-of-speech tagging (mapping of

individual words to their lexical classes, eg

noun, verb, adjective),21 word stemming

(reducing a word to its stem or root form,

eg both inhibitor and inhibited are reduced

to inhibit)22 or lemmatisation (mapping a

word to its lemma or the base form, eg

bind is the lemma for binds, bound, binding).

Syntactic processing usually involves

parsing as the process of determining the

syntactic structure of a whole sentence

(full or deep parsing) or some of its parts

(partial or shallow parsing).23 Syntactic

structure often implies the semantic

relations between the concepts described.

The interpretation of the semantic

content expressed by natural language

requires linguistic knowledge and some

degree of general knowledge. In

specialised domains such as biomedicine,

it also requires domain-specific

knowledge. Scientific publications do not

explicitly encode all the necessary

information needed to understand the

reported conclusions. The targeted reader

is assumed to possess some expertise in the

area. For example, a biomedical expert

should be able to infer that 5 alpha-

dihydrotestosterone is a hormone, [3H]R1881

is used as a ligand and androgen receptor is a

receptor. For TM applications to take a step

closer to natural language

understanding,24 such specialised

knowledge needs to be encoded in a

machine-readable form to a great extent.

Biomedical ontologies currently provide

(partial) coverage of the domain, and thus

can be used in TM applications together

with other forms of knowledge (eg

linguistic) to aid semantic interpretation

of biomedical publications.

With each layer of annotation (lexical,

syntactic and semantic), better

opportunities for more sophisticated

analysis arise. For example, a simple search
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with a query term testosterone over raw

text is not able to differentiate between a

single token testosterone and testosterone as

part of other tokens (eg 5 alpha-

dihydrotestosterone). Similarly, searching for

tokens of the inhibit relation by using a

single search term inhibit over tokenised

text would not retrieve other forms of the

same word (eg inhibits or inhibited), while

this is simply achieved in a lemmatised

text by looking for the lemma inhibit.

Further, syntactic information can be used

to differentiate between the genuine

occurrences of query terms and their

nested occurrences within other terms (eg

androgen v. androgen receptor).

While most of these problems can be

tackled effectively to a certain degree

using various heuristics, a real window of

opportunity for sensible TM opens only

by adding structured semantic

information to text representation. An

explicit semantic layer supported by the

use of ontologies offers a higher

expressive power for formulating

semantic queries as opposed to simple

Figure 3: Generic illustration of a possible pipeline of text processing modules, not necessarily reflecting any particular
analysis technique. For example, a sublanguage analysis would probably not separate syntactic and semantic processing, as it
would use a syntactico-semantic approach. Each module enhances text representation with a layer of annotation, which
represents explicit linguistic and/or semantic information attached to text in machine-usable form. Such information is
inferred by a human reader through the use of (1) linguistic and general knowledge, and (2) domain-specific expertise, but
for the text to be analysed automatically at a higher semantic level, a large part of such knowledge has to be explicitly
represented in a machine-readable form. Here the focus is on domain-specific knowledge and ontologies as the means of
their machine-readable descriptions. The figure illustrates a possible role of ontologies in semantic interpretation as part of
overall text processing
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Boolean queries and keyword matching.

Furthermore, semantically annotated text

coupled with ontologies can be mined for

higher-order relations between

biomedical entities including temporal,

causal, conditional and other types of

relations (eg the conditions that produce a

sequence of events that results in the

expression of a disease with genetic

predisposition) as a contrast to simple

correlations between them (eg gene–

disease associations).

Information
extraction

Until recently, most TM systems have

used neither a sophisticated

terminological lexicon nor an ontology of

entities or of events. They have used

gazetteers, which map between a look-up

string and a tactically useful semantic

category, from a small set. However, the

gazetteer-based approach is not suited for

biomedical TM, because terminology

plays a crucial part in characterising

knowledge in the domain. This is one of

the main reasons why biomedical TM

systems generally provide poorer results

compared with other domains (eg

newswire-type data). The following

sections describe how ontologies can be

used to support various TM-related tasks.

INFORMATION RETRIEVAL

Information retrieval

IR is extensively used by biomedical

experts to locate relevant information

(most often in the form of relevant

publications) on the Internet. Apart from

general-purpose search engines such as

Googletm, many IR tools have been

designed specifically to query the

databases of biomedical publications such

as PubMed.25–29

It is particularly important in

biomedicine not to restrict IR to exact

matching of query terms, because term

ambiguity and variation phenomena may

cause irrelevant information to be

retrieved (low precision) and relevant

information to be overlooked (low recall).

Some biomedical ontologies (eg UMLS)

explicitly store such terminological

information (though not always

complete). In addition, the hierarchical

organisation of ontologies and relations30

between the described concepts (and

through them the corresponding terms)

can be used to constrain or relax a search

query and to navigate the user through

huge volumes of published information.

For example, Suarez et al.31 utilised

UMLS for this purpose. Similarly,

TIMS32 uses an ontology to perform a

sophisticated search, which enables users

to access implicitly stated relevant

information through hierarchical query

expansion. More recently, Müller et al.33

developed Textpresso, an IR system

operating at the sentence level. It uses a

specifically designed ontology to query a

corpus for information on specific classes

of biological concepts (gene, allele, cell,

etc) and their relations (association,

regulation, etc).

INFORMATION
EXTRACTION
Early efforts in biomedical IE were

devoted to named entity recognition

(NER) – the recognition of terms

denoting specific classes of biomedical

entities (eg gene and protein names),34

followed by the extraction of specific

relations between such entities (eg

protein–protein interactions),35

progressing slowly towards extracting

more complex types of information (eg

metabolic pathways).36 In this section, an

overview is given of the existing

approaches to these problems that rely on

the use of ontologies. First, the focus is on

NER as a crucial step in extracting more

complex types of information (ie facts and

events). The following subsections look at

how ontologies are used in IE systems to

extract facts and events, focusing on rule-

based systems, bearing in mind that there

have been few attempts to apply machine

learning (ML) techniques to fact or event

extraction.35 Here an important

distinction is made between ontology-

based and ontology-driven systems.

Named entity recognition
IE depends on NER (ie term recognition,

classification and mapping to designated

concepts) as the main step in accessing

Semantic annotation
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textually described domain-specific

information.38 As already mentioned, the

mapping between terms (in text) and

concepts (in an ontology) is not trivial.

One of the main reasons is that terms

exhibit a high degree of variation, which

is not always explicitly reflected in

biomedical ontologies.39 For this reason,

the UMLS ontology is distributed

together with computational support for

neutralisation of variation in the

biomedical domain.40

Typically, one-third of term

occurrences are variants,41 which means

that many new terms can be recognised as

variants of known terms. Therefore, a list

of classified terms that can often be

derived from a biomedical ontology can

be used as a training set to automatically

detect new terms. (We differentiate

between the use of the word term in this

paper and the same word used in some of

the biomedical ontologies, where it is

used as a concept label (eg GO terms).

Unfortunately, such concept labels have

little to do with terms as they occur in

text or as they are found in term banks.

Many ontological ‘terms’ are not attested

linguistic units. Instead, they have more

in common with documentation

thesaurus descriptors, facet labels or index

terms from a controlled vocabulary than

with terminological terms.)
Passive ongology use Chiang and Yu42 used a rule-based

approach and the Gene Ontology to

support robust dictionary-based term

recognition. They consider variants

arising from permutation (same words,

but in different order, eg inner

mitochondrial membrane v. mitochondrial inner

membrane) and insertion/deletion (eg focal

adhesion associated kinase v. focal adhesion

kinase). In addition, edit distance is

calculated to measure the reliability of the

term variant recognition through the

above rules.

Tsuruoka and Tsujii43 implemented an

approach to the recognition of

orthographic variants (eg EGR-1 v. EGR

1 v. EGR1), which are a common type of

variation in protein names. Such variants

were automatically recognised by

applying approximate string matching

techniques for the known protein names

against a domain-specific corpus. The

UMLS ontology was used to provide

training data.

Tsuruoka and coworkers44,45 also

developed a probabilistic term variant

generator. In rule-based variant

generators, arbitrary variants may be

produced, resulting in a large number of

non-existing variants, whose matching

against a corpus consumes time and

resources unnecessarily. In order to

reduce this problem, each generated

variant is assigned a probability factor

corresponding to its plausibility. Rules are

defined as applications of allowed

operations (substitution, deletion and

insertion) in a given context. They are

learnt together with their probabilities

from raw text.

Mukherjea et al.46 used UMLS to

extract biomedical term formation

patterns and learn classification rules,

which are then used to semantically

annotate different classes of terms in text.

Ontology-based IE
Ontology-based IE systems attempt to

map a term occurring in text to a concept

in an ontology, typically in the absence of

any explicit link between term and

concept. This is passive ontology use.

When such mapping is attempted depends

on the type of approach adopted. For

example, where syntactic chunking

(identification of major syntactic

constituents such as noun and verb

phrases) is followed by syntactic parsing

(linking syntactic constituents to build the

representation(s) of an entire sentence),

ontology look-up will occur after a

syntactic parse has been obtained. Where

a hybrid, syntactico-semantic approach is

adopted, there can be early look-up of an

ontology. Where term recognition is

applied, ontological categories can be

assigned early, instead of ad hoc semantic

ones. Leroy and Chen47 provide an

example of late-stage ontology (GO,

HUGO and UMLS) look-up. In another

approach,48 late-stage attempts to map

Named entity
recognition
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tokens of relations to concept labels in

ontologies were a major source of failure:

the technique called for at least one word

from each argument of a relation to exist

in GO or HUGO, and for at least one

word forming the predicate to exist in a

list of domain verb stems.

Kim and Park49 applied full syntactic

parsing, but only on sentences containing

instances of predefined patterns involving

keywords. Extracted general biological

interaction information is annotated with

GO concepts. There is an attempt to

exploit similarities of sentential syntactic

dependencies and ontology label syntactic

structure to achieve mapping to concepts.

Ontology-driven IE

Active ontology use

Ontology-driven IE systems, unlike

ontology-based ones, make active use of

an ontology in processing, to strongly

guide and constrain analysis. For example,

Daraselia et al.50 employ a full sentence

parser51 and a domain-specific filter to

extract information on protein–protein

interactions. Each of the potentially many

thousands of semantic analyses per

sentence is filtered against a custom-built

frame-based ontology to yield a frame

tree, a representation in which ontological

frames are instantiated and linked

according to the constraints expressed in

the ontology. Frame trees are converted

to conceptual graphs, which can then be

subjected to querying or used as a basis for

advanced mining.

Machine learning in
text mining

PASTA52 extracts information on the

roles of specific amino acid residues in

protein molecules. An ontology-based

domain model is incrementally populated

with the contents of predicate–argument

structures, with inference and co-

reference also contributing to enrich the

domain model.

GenIE53 extracts information on

biochemical pathways, and on sequences,

structures and functions of genomes and

proteins. It makes use of an ontology

linked to a semantic lexicon, in which

fillers of verbal semantic subcategorisation

slots are particular concepts, or

specialisations thereof. It applies syntactic,

semantic and ontological constraints to

filter out implausible analyses, and

integrates extracted information in

discourse-level semantic representations.

GENIES54,55 adopts a strong

sublanguage approach, which leverages

the specific informational structure of

specialised texts to reduce ambiguity. This

approach is applied to extraction of

biomolecular interactions relevant to

signal transduction and biochemical

pathways, using hybrid syntactico-

semantic rules. A small number of

semantic categories relevant to the

biomolecular domain is used. In addition,

an ontology was developed,56 covering

both entities and events. Friedman et al.55

describe how the semantic categories that

verbs look for in their environment are

mapped to the more general categories

found in ontologies.

As evidenced by the results reported on

the described systems, an ontology-driven

IE approach is to be preferred to an

ontology-based approach for extraction of

relations, facts and events. Hybrid

syntactico-semantic approaches offer

promising results, particularly where these

are based on a strong sublanguage

approach and are linked with an

ontology-driven approach.

MACHINE LEARNING
Previously, the potential of using an

ontology as a training set for NER as a

specific task of TM has been illustrated.

For this purpose, an ontology is reduced

to a list of classified terms. However,

ontologies provide much richer

information, which may be utilised by

ML approaches to other TM tasks, such as

term classification, term clustering and

term relation extraction.

Numerous ML approaches have used

the GENIA corpus, semantically

annotated with its own custom ontology,

as the training or testing set for different

TM tasks:57 eg NER7 using methods such

as hidden Markov models,58,59 naive

Bayes classification,43,46 maximum

entropy,60,61 conditional random

field,62,63 support vector machines,64,65
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decision trees66 and a combination of

different heuristics.67

Training corpora The current version of the GENIA

corpus consists of 2,000 manually

annotated PubMed abstracts. While

without doubt extremely useful for many

ML approaches to TM tasks,68 the manual

building of semantically annotated

resources is an expensive task.46

However, an ontology can be

practically used to sense-tag raw text, ie to

map a term occurrence to its sense (the

concept designated by the given term).

The relational information stored in the

ontology can be used to automatically

disambiguate terms that can be mapped to

multiple concepts. For example, Liu

et al.14 used co-occurrence with related

terms to resolve the meaning of an

ambiguous term.
Ontology structure Ontologies are typically organised in a

hierarchy using the is-a relation between

concepts. This property can be used to

quantify the similarity between the

concepts and, implicitly, the semantic

similarity between the terms used to

designate these concepts.69 Such

numerical information that can be

inferred from an ontology, on top of the

symbolic information it explicitly stores, is

of particular value for TM applications.

For example, semantic similarity measure

can be used as a vehicle of ML approaches

(instance-based approaches such as

k-nearest neighbour and case-based

reasoning)70 to a variety of TM tasks (eg

clustering71 and classification72 of both

individual terms and the documents

containing them).
Semantic similarity
measures

A number of different approaches to

inferring semantic similarity from an is-a

hierarchy have been suggested. The tree

similarity (ts) between two concepts, C1

and C2, is calculated according to the

following formula:

ts(C1, C2) ¼
2 . common(C1, C2)

depth(C1) þ depth(C2)

where common(C1, C2) denotes the

number of common nodes in the paths

between the root and the given concepts,

and depth (C) is the number of nodes in

the path connecting the root and the

given concept C. This formula is a

derivative of Dice’s coefficient where

ancestor concepts are treated as their

features and the similarity corresponds to

the ratio between the common and all

features. It has been previously used to

measure conceptual similarity in a

hierarchically structured lexicon.73 A

‘probabilistic’ variation of this model:74

ts(C1, C2) ¼
2 . log P[S(C1, C2)]

log P(C1) þ log P(C2)

is obtained by ‘normalising’ Resnik’s75

variant of semantic similarity measure:

ts(C1, C2) ¼ �log P[S(C1, C2)]

where S(C1, C2) is the deepest common

node that subsumes both of the given

concepts, and P(C ) is an estimation of the

probability of a textual realisation of the

given concept C.

Term similarity measures need to be

consistent in reflecting semantic similarity

between the designated concepts, and an

ontology can be used to assess such

consistency. For example, Spasic et al.76

used an ontology hand-crafted by a

domain expert to automatically tune the

parameters of a weighted corpus-based

term similarity measure. The core

similarity method is based on the lexical

and contextual term similarities. In this

approach, an ontology was used to

provide the training values for the

conceptual term similarity (calculated as

Dice’s tree similarity – see above), which

should be approximated by the textual

term similarity values. A consistent

approximation of ontology-based

similarity measure is important in

biomedicine, because new concepts

described in literature using new terms are

not efficiently incorporated in an

ontology.

In another approach, Spasic and

Ananiadou77 utilised UMLS to compare

individual term occurrences in an edit

distance (ED) approach to assessing their

contextual similarity. Partial parsing was

used to chunk the contextual information

into major syntactic constituents, with
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special consideration given to terms. The

importance of terms as principal

conveyors of domain-specific information

was reflected in the high cost of deleting

and inserting terms when aligning two

contexts through ED. The cost of

replacing (or matching) two terms in such

an alignment depends on their semantic

similarity, which is estimated via their tree

similarity using their positions in the

ontology (see above). Lexical similarity

was used as an alternative for ontological

tree similarity for terms not found in the

ontology. In addition, the ontology was

used to navigate through the conceptual

space and efficiently select credibly similar

contexts, ie the ones sharing semantically

similar terms.72

CONCLUSIONS

Terminology and
ontology resources

Different layers of text annotation (lexical,

syntactic and semantic) are required for

sophisticated TM in biomedicine. High

terminological variability, typical of the

domain, emphasises the need for lexico-

syntactic procedures and annotations that

can be used to neutralise the effects of

such variation. Such phenomena can be

tackled effectively through the use of

rule-based or machine learning

techniques. However, traditional heuristic

and ad hoc TM methods simply do not

deliver in a complex sublanguage such as

that of biomedicine. Encoding of the

explicit semantic layer in biomedical text

representation needs to be supported by

ontologies as the formal means of

representing domain-specific knowledge.

Up until recently, most TM systems have

not relied on ontologies or terminologies,

which is the main reason why biomedical

TM systems generally provide poorer

results compared with other domains (eg

newswire).

Therefore, ontologies together with

terminological lexicons are prerequisites

for advanced TM. It is not enough to rely

on one or the other: both are needed if

we wish to produce highly accurate

results of the kind needed by biomedical

experts and also to obtain broad coverage

of biomedical text. TM applications

should aim at deriving complex

information from text, eg temporal,

causal, conditional and other types of

semantic relations between biomedical

entities as opposed to simple associations.

In order to achieve such objectives,

biomedical text needs to be semantically

annotated and actively linked to

ontologies.

This leads us to the question of the

types of ontologies needed for TM. As

demonstrated by GENIES54 and GenIE,53

it is essential to focus on describing the

syntactic and semantic behaviour of

biomedical sublanguage and on the formal

description of domain event concepts.

These systems had to develop their own

ontologies of events and their own

terminological lexicons. Therefore, the

challenge for the field is to develop

appropriate ontology resources and link

them to adequate terminological lexicons

in order to support the kind of processing

required – and also to support

interoperability between such ontologies.

This can be greatly facilitated by recent

advances in reducing the cost of

configuring and tuning systems based on

biomedical sublanguage: lexical standards

enabling reusability; ML techniques to

discover patterns of sublanguage

behaviour in large annotated text corpora

to help grammar writers; development of

ontologies that can act as domain models

and major developments in extracting and

characterising terminology, including

compound terms and acronyms.
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