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Abstract
In this review, we discuss applications of the theory of birth-and-death processes to problems in biology, primarily,
those of evolutionary genomics. The mathematical principles of the theory of these processes are briefly described.
Birth-and-death processes, with some straightforward additions such as innovation, are a simple, natural and formal
framework for modeling a vast variety of biological processes such as population dynamics, speciation, genome
evolution, including growth of paralogous gene families and horizontal gene transfer and somatic evolution of
cancers. We further describe how empirical data, e.g. distributions of paralogous gene family size, can be used to
choose the model that best reflects the actual course of evolution among different versions of birth-death-
and-innovation models. We conclude that birth-and-death processes, thanks to their mathematical transparency,
flexibility and relevance to fundamental biological processes, are going to be an indispensable mathematical tool for
the burgeoning field of systems biology.

Keywords: mathematical modeling; genome evolution; birth-and-death process; Moran model; horizontal gene transfer;
tumorigenesis

INTRODUCTION
Mathematics has long been intertwined with the

biological sciences. The importance of mathematical

approaches in many areas of biology is obvious but

it is less appreciated that biological questions have

stimulated the emergence of a variety of new

directions in mathematics. Among many others,

the areas of mathematics fully or partially developed

in response to demands of biology include branching

processes, traveling wave solutions of reaction-

diffusion systems, Turing bifurcation and diffusive

instability, analysis of replicator equations, stochastic

coalescent process, evolutionary game theory and

analysis of variance [1, 2].

Another fruitful and diverse mathematical field

inspired by biology is the theory of birth-and-death

processes. This theory was developed in the begin-

ning of the twentieth century as a result of attempts

to model growth of a population, taking into

account stochastic demographic factors. With time,

the theory became increasingly sophisticated,

spawning new branches of stochastic process analysis

[3]. Importantly, however, the first and simplest
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birth-and-death processes considered by Yule [4],

Feller [5] and Kendall [6] provide a natural and useful

theoretical framework for several areas of modern

biology, such as estimation of the age of alleles,

reconstruction of phylogenies and modeling various

aspects of genome evolution.

A birth-and-death process is a stochastic process

in which jumps from a particular state (number of

individuals, cells, lineages, etc.) are only allowed to

neighboring states (Figure 1). A jump to the right,

i.e. increase by one of the number of individual or

similar quantities represents birth, whereas a jump to

the left represents death (Figure 1). This property

considerably simplifies the mathematical analysis,

but the process remains applicable to numerous

real-world systems. Birth-and-death models allow

one to address any questions formulated in terms of

transition or state probabilities of the process,

stationary distribution, mean, variance and distribu-

tion of times of the first entrance to a particular set

of states, probabilities of extinction, the mean time

of existence, etc. The results obtained with these

models can be compared with empirical data allowing

one to either reject some of the initial assumptions,

or accept the model as a useful tool for analysis and

prediction of properties of the real system.

Early models in population biology, including

those based on the theory of birth-and-death

processes, were largely deterministic. However,

from the very beginning of population growth

modeling, it had been clear that a more refined

analysis must take into account the role of stochastic

factors in the evolution of the population. An early

recognition of this fact is evident in the 1874 study of

extinction of human families by Watson and Galton

[7] (reviewed, e.g. in [6]). The classic deterministic

theory of population growth treats the size of a

population as a continuous variable. This means that

the state space of the process under consideration is

continuous in the deterministic setting. By contrast,

the state space of the corresponding stochastic

process is discrete. In this regard, the stochastic

models are more realistic than the deterministic ones

because counts of individuals (genes, cells, number

of species or gene families, etc.) are discrete by

definition. Loosely speaking, each deterministic

model can be viewed as an approximation of the

corresponding stochastic model. This, however, does

not mean that deterministic models always yield

qualitatively valid solutions. A case in point is the

phenomenon of persistence and its complement,

extinction: there are situations when a deterministic

model predicts that a population approaches a

positive stationary level, whereas the corresponding

stochastic model shows that extinction occurs with

certainty. A classic example is a population model

that consists of a simple branching process with the

mean number of children equal to one. This process

inevitably goes to extinction whereas the corres-

ponding deterministic model describes a population

with a constant size. Another well-known example is

the logistic stochastic process considered next [8, 9].

Here we review the basic principles of the theory

of birth-and-death processes and discuss examples of

recent studies that involve, as the main or an auxiliary

approach, analysis of a birth-and-death process. A

simple introduction to the theory of birth-and-death

processes is given in [9] and [8]. A more complete

mathematical presentation can be found in [10–13]

and in other mathematical texts on stochastic processes.

BRIEFMATHEMATICAL
BACKGROUND
The general study of temporally continuous, sto-

chastic models of population growth apparently

started with the work of Feller [5]. The cardinal

assumption was that the growth of a population can

be represented by a Markov process, i.e. the state of

the population at time t can be described by the

value of a random variable X(t) with the property,

Pr XðtÞ ¼ njXðt0Þ ¼ m0;Xð�1Þ ¼ m1; . . . ;Xð�kÞ ¼ mk
� �
¼ Pr XðtÞ ¼ njXðt0Þ ¼ m0

� �
;

for all �i� t0 and whenever t0 < t. The nature of the

variable X(t) differs from model to model. In this

Figure 1: Representation of a birth-and-death process as a movement of a material particle between states. ln�t is
the probability of a jump to the right from state n (birth) and�n�t is the probability of a jump to the left (death) during
a short time interval�t.
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review, we consider only models with continuous

time although an analogous theory exists for stochastic

birth-and-death processes with discrete time [8].

If we interpret X(t) as a population size, then

a birth-and-death process is a Markov process

{X(t), t� 0} such that, in an interval (t, tþ�t), each
individual in the population has the probability

ln�tþ o(�t) of giving birth to a new individual

(probability of transition from state n to state nþ 1)

and the probability �n�tþ o(�t) of dying (prob-

ability of transition from state n to state n� 1).

The parameters ln and �n are called the birth rate

and death rate, respectively (n is the population size).

For an intuitively plausible depiction of a birth-and-

death process, it is useful to imagine a material

particle, which moves from an integer to the

neighboring integer, the path function X(t) being

the position of particle at time t (Figure 1). We

emphasize that, by specifying the rates ln and �n in

terms of known or, at least in principle, identifiable

parameters of the real world system, we define the

particular model that is used to extract salient

information on the behavior of the system. In

other words, application of the theory of birth-

and-death processes consists of two stages: first, the

rates ln and �n have to be specified, and second, the

resulting process, which depends on the parameters

of the biological system, is analyzed.

The state probabilities pn(t)¼Pr{X(t)¼ n} of the

process being in state n at time t satisfies the

following system of differential equations, called

Kolmogorov forward equations [9]:

dp0ðtÞ
dt

¼ ��0p0ðtÞ þ �1p1ðtÞ;

dpnðtÞ
dt

¼ �n�1pn�1ðtÞ � �n þ �nð ÞpnðtÞ

þ �nþ1pnþ1ðtÞ; n � 1

ð1Þ

Here we consider birth-and-death processes

whose state space consists of non-negative integers

{0, 1, . . . ,N, . . .}. Generally, there are two types of

random processes: one in which there are no

restrictions on the allowed set of states and the

other in which there are restrictions in the sense that

some states have special properties. For example, in a

growing population, once the number n of individ-

uals is zero, the growth process stops (if there is no

immigration). Thus the state n¼ 0 is a special state,

i.e. once the process reaches this state, it is trapped

forever. Such states are called absorbing states.

Another special state is the so-called reflecting state.

Once the process reaches a reflecting state, it must

return to the previously occupied one. Having in

mind biological applications of birth-and-death

processes, we consider here random processes that

have either one or two special (absorbing or

reflecting) states.

Equations (1) have to be solved subject to an

initial condition and some boundary conditions.

It is sufficient to solve them for the initial condition

pn(0)¼ �n,m, i.e. for the case when the process is

initially in a definite state m; here �n,m¼ 1 if n¼m
and �n,m¼ 0 if n 6¼m. The state probabilities pn(t)
give full information about the analyzed process but

it is usually difficult to solve system of Equation (1).

Here we present a brief classification of the simple

birth-and-death processes. Throughout the text, we

denote the general birth and death rates as ln and �n,

respectively; these rates may depend on state, n,
time, and other parameters, whereas symbols l and �
correspond to constants.

The simplest case when the solution of system of

Equation (1) is straightforward is a pure birth process

or the Poisson process. In this case, we have ln¼ l,
�n¼ 0, and the solution of (1) subject to the initial

condition p0(0)¼ 1 is the Poisson distribution

pnðtÞ ¼
�tð Þ

n

n!
e��t

with parameter lt.
It is well known that the distribution of the time

intervals between any two successive jumps in any

Markov process with continuous time and discrete

space of states is exponential [8]. More precisely, let

Wi be the instant of the ith jump of the birth-and-

death process (1) and Ti¼Wiþ1�Wi be the sojourn

time; suppose that X(Wi)¼ n, then the process

spends exponentially distributed time Ti in the

state X(t)¼n with the mean E[Ti]¼ 1/(lnþ�n).

When a jump occurs, it will be a birth with

the probability ln/(lnþ�n) or a death with the

probability �n/(lnþ�n).

If the birth and death rates of system of

Equation (1) are linear functions of n, then the

so-called probability-generating functions technique

can be applied for writing down the appropriate

partial differential equations for the probability-

generating function [14]. Historically, this method

had been the main tool for analyzing various birth-

and-death processes [6, 15]. It is straightforward

to obtain results for a simple birth process

(ln¼ ln, �n¼ 0 [9]), simple death process (ln¼ 0,
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�n¼�n [9]), simple death-and-immigration process

(ln¼ l, �n¼�n [16]), simple birth-and-death

process (ln¼ ln, �n¼�n [9]), generalized simple

birth-and-death process (ln¼ l(t)n, �n¼�(t)n [6])

and a simple birth-and-death process with immigra-

tion (ln¼ lnþ �, �n¼�n [9, 17]).

For example, for a simple birth process with the

initial condition pm(0)¼ 1, it can be shown that the

state probabilities are

pnðtÞ ¼
n� 1

m� 1

� �
e�m�t 1� e��t� �n�m

; n � m:

This stochastic process was first studied by Yule [4]

in connection with the mathematical theory of

evolution. The state of the process was thought of

as a species within a genus, and the creation of a

new species by mutation was conceived as being

a random event with the probability proportional

to the number of species. Yule used this process to

explain the observed power law distribution of

genera of plants having n species.

For a simple birth-and-death process, one can

find [9]

p0ðtÞ ¼ P0;

pnðtÞ ¼ 1� P0ð Þ
1� �P0

�

� �
�P0

�

� �n�1

; n � 1;

where

P0 ¼
� eð���Þt � 1
� �
�eð���Þt � �

;

under the initial condition p1(0)¼ 1. For other

possible initial conditions, the solution of (1) is more

complicated but still can be obtained. Thanks to the

exact nature of this solution, it has many applications

in current research, e.g. for phylogeny reconstruc-

tion [18, 19] or for estimation of the age of rare

alleles [20].

As pointed out above, the method of probability-

generating functions generally works when birth and

death rates are linear functions of n. Karlin and

McGregor [17, 21] showed that the solution of (1)

could be obtained with the help of a sequence of

orthogonal polynomials, which are closely related

to the birth-and-death process. The general linear

case ln¼ lnþ �, �n¼�nþ �, was solved in [17] for

�¼ 0. The case of � 6¼ 0 was analyzed in [22]. The

asymptotically symmetric quadratic case ln¼ (N� n)
(nþ a), �n¼ n(nþ b) first appeared in applications

concerned with genetic models [23]. Some other

special cases also have been described [24], and more

on recent advances in the study of birth-and-death

processes and associated polynomials can be found in

[25]. The problem with exact solutions of system (1)

is that, in many cases, the expressions for the state

probabilities, although explicit, are intractable for

analysis and include special polynomials. In such

cases, it may be sensible to solve more modest

problems concerning the birth-and-death process

under consideration, without the knowledge of the

time-dependent behavior of state probabilities pn(t).
It is usually not difficult to write down the

differential equations for the first few moments of

X(t) [14]. For example, for a simple birth process,

the equation for the mean E[X(t)] is

dE XðtÞ½ �

dt
¼ �E XðtÞ½ �

with the solution E[X(t)]¼ elt for the case p1(0)¼1.

It should be noticed that, in this case, the mean

growth of the process follows the same exponen-

tial law as the one that appears in the simplest

deterministic model of population growth, namely,

dN(t)/dt¼ lN(t), where N(t) is the population size

and l is a Malthusian parameter. Sometimes, this fact

is used as justification for the assertion that the

deterministic theory is simply an account of the

expectation behavior of the random variables, which

occur in the stochastic formulation. This is not

generally true as first pointed out by Feller [5]. For

example, this is not the case for the logistic stochastic

process considered next.

The method for writing down equations for the

moments of X(t) works only when ln and �n are

linear functions of n. If ln and �n include terms with

n of degree higher than 1, the equation for the mean

involves, generally, the second moment, the equa-

tion for the second moment involves the third

moment and so on. This hierarchy of equations can

only be solved approximately, by making any of a

variety of approximations. Recently, the moment

closure approximation has become a popular tech-

nique for obtaining such solutions [26]. Applications

of this method to the logistic stochastic process can

be found in [27, 28].

Some other tractable quantities give insight into

the evolution of a birth-and-death process, in

particular:

(i) the steady-state probabilities p�n ¼ pnð1Þ

describing the process when it is in a dynamical

equilibrium;

Applications of the theory of birth-and-death processes 73
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/7/1/70/263777 by guest on 25 April 2024



(ii) the probability that a given state is ever reached;

(iii) the ‘first passage time’, i.e. the time for the

process to reach a given state for the first time,

its probability density function and its moments.

A full account of the possible expressions for these

quantities is given in [14]. These formulas are exact

but in many cases computationally intensive; how-

ever, for many of these expressions, useful approx-

imations can be found, and the availability of exact

formulas allows one to test these approximations.

MODELSOF POPULATION
EVOLUTION BASEDON THE
BIRTH-AND-DEATH PROCESS
The Moran model
One of the main goals of theoretical population

genetics is to study changes in the genetic makeup

of the population under various evolutionary forces,

such as selection, mutation, migration and random

drift. Theoretical studies rely on deterministic and

stochastic mathematical models which capture the

essential features of populations. Deterministic

models are applicable when the size of the popula-

tion is very large; and when the finite population size

cannot be ignored, stochastic models should be used.

Furthermore, certain problems can be solved only in

stochastic settings.

Let us consider a population of haploid individuals

of a fixed constant size N (this is not a very restrictive

assumption [29]). Let us further consider one locus

that can have two types of alleles, A and a. The
individuals with different alleles may differ in fitness,

i.e. some individuals have a selective advantage over

others. A few of many problems intrinsic to this

model that can be of a particular interest are the

following: Because of random drift (stochastic nature

of births and deaths), one of alleles eventually goes

extinct; if there are no mutations, the population

becomes homogeneous and the interesting quantity

is the speed with which it approaches homozygosity.

Another situation is appearance of a unique mutant

(e.g. A); in this case, the probability of fixation of A
and the mean time of fixation are of particular

importance. If we assume that mutations can go

in either direction, then the population will be

heterozygous forever, and the variable of interest

is the stationary distribution. To study all these

problems quantitatively, a mathematical model is

required.

Two such models have been the basis of most of

the work in population genetics: the Wright–Fisher

model [30, 31] and the Moran model [29]. The

Wright–Fisher model describes populations with

discrete, seasonal reproduction and non-overlapping

generations, whereas the Moran model is most

applicable to populations with continuous reproduc-

tion. One of the possible formulations of the Moran

model represents a continuous time birth-and-death

process with nonlinear rates and finite state space.

The Moran model is important for two reasons: First,

in contrast to the Wright–Fisher model, it applies

to organisms with overlapping generations. Second,

many results that can be obtained only approxi-

mately under the Wright–Fisher model can be

derived exactly using the Moran model. As Moran

pointed out, ‘this model is simpler because from any

state one can move only to the neighboring ones,

which simplifies the theory’ [31].

In order to analyze the model, we need to define

the birth and death rates. The biological system can

be described using several parameters: the population

size, the current number of individuals that carry

allele A, the selective advantage of A over a (or vice
versa) and the mutation rates from A to a and from

a to A. If the rates ln and �n can be expressed as

functions of these parameters, a complete description

of the system (within the framework of the model)

will be obtained.

Let there be n copies of allele A and N� n copies
of allele a; each individual lives for an exponentially

distributed amount of time with a mean of 1 and

then is ‘replaced’; the replacement for individual x
is chosen at random from all individuals in the

population including x itself; the new individual

replaces the old one at x. It is assumed that indi-

viduals carrying A have the selection coefficient s.
The transition rates for the Moran model can be

written as

�n ¼ 1þ sð Þ
N � n
N

pn; �n ¼
n
N

1� pnð Þ; ð2Þ

where pn is the probability that the choice results

in an A if there are n copies of this allele in the

population. Assuming that there are no mutations,

pn¼ n/N. If we assume that the mutation rate from

A to a is v, and from a to A is u, then

pn ¼
n
N

1� vð Þ þ
N � n
N

u:

If v 6¼ 0 and u 6¼ 0, we deal with a birth-and-death

process with reflecting boundaries (l0 6¼ 0, �N 6¼ 0).
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The presence of reflecting boundaries means that

there exists a stationary distribution p� which is easy

to calculate numerically noting that, at equilibrium,

p�n�n ¼ p�n�1�n�1 must be satisfied. Under particular

conditions (when N is large), a good approximation

for the stationary distribution can be found [10].

If we assume that there are no mutations, then

l0¼�N¼ 0, and we have a birth-and-death process

with absorbing boundaries. In this case, the fate of a

unique mutant appearing in the population can be

studied. One of the main questions in this situation

is the probability of fixation, i.e. the probability

that a new mutant penetrates the entire population.

In mathematical terms, this can be expressed as the

probability of reaching the absorbing state N before

reaching the absorbing state 0. The probability that

the system ends up in the state N (the probability of

fixation) if initially there is only one A is [14]

Pfix ¼
1

1þ
PN�1

i¼1

Qi
n¼1 ð�n=�nÞ

:

Using (2) with u¼ �¼ 0, it is readily evaluated to

Pfix ¼ �ðsÞ ¼
1� 1þ sð Þ

�1

1� 1þ sð Þ
�N �

1� e�s

1� e�sN
; ð3Þ

where the second formula in Equation (3) is the

classical formula for the probability of fixation of

a selective allele obtained by Kimura from the

diffusion approximation of the Wright–Fisher model

[32]. The more common form of the last formula has

the factor 2s rather than s. The difference comes

from different samplings in these two models and,

accordingly, different rates of random genetic drift

[33]. If s¼ 0, one can find that Pfix¼ 1/N, the

probability of fixation of a neutral mutant.

Logistic growth
Since the very beginning of the study of birth-

and-death processes, the logistic process had been

considered [5]. The deterministic version of the

logistic model was originally introduced in [34].

This model accounts for the density dependence in

the growth of a single population. It is based on the

hypothesis that the net birth rate per individual

(i.e. the difference between the birth rate and the

death rate) is a linearly decreasing function of

the population size. This implies that the net

population birth rate is a quadratic function of the

population size. The model is closed in the sense

that no immiagration or emigration is allowed.

Mathematically, the deterministic logistic model

leads to a nonlinear differential equation

dNðtÞ
dt

¼ rNðtÞ 1�
NðtÞ
K

� �
; Nð0Þ ¼ N0 ð4Þ

that can be solved explicitly. Here N(t) is the size

of the population at moment t, r>0 is the intrinsic

growth rate, and K>0 is the carrying capacity. All

solutions of Equation (4) monotonically lead to the

asymptotically stable equilibrium N� ¼N(1)¼K.
Various stochastic formulations of the logistic

model have been developed and analyzed [8, 35].

Apparently, the first stochastic version of the

logistic model was formulated by Feller [5] as a

finite-state birth-and-death process. Feller derived

the Kolmogorov forward equations for the state

probabilities. One of his results is that the solution

of the deterministic model does not agree with

the expectation of the solution of the stochastic

model when both are studied as functions of

time. However, the difference can be shown to be

asymptotically small as the maximum population size

increases.

The logistic stochastic process is important for

several reasons. It is well appreciated that the genetic

makeup of a population strongly depends on the

population structure while most of the population

evolution models (like the Moran model considered

previously) assume a constant population size. So, for

more realistic modeling of population evolution,

stochastic models with changing population size are

required. Density-dependent effects influence the

size of the population, preventing indefinite

growth, and the logistic model is the simplest

stochastic model with changing population size and

density-dependent mechanisms that affect this size.

In the logistic model, the state zero is usually an

absorbing state such that eventual absorption at the

origin is certain (contrary to the solution of the

deterministic model), and all states except the origin

are transient (the state is called transient if the process

visits this state only finitely many times). Two

qualitatively different behaviors are possible at any

given time: the process either goes extinct after

having reached the absorbing state at the origin or

remains in the set of transient states. Thus, the

immediate two issues to address are the calculation

of the mean time to extinction and the possible

behavior of the system prior to extinction. The mean

time to extinction can be calculated using the known

formulas. For example, Goel and Richter-Dyn use a
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stochastic version of a special case of the logistic

model to examine the extinction of a colonizing

species [14]. However, the time to extinction may

not have a known distribution, because of which

characterizing the system by the mean time to

extinction can be misleading.

The behavior of the process prior to extinction

can be productively explored within the frame-

work of the so-called quasi-stationary distributions

[36]. The quasi-stationary distribution cannot be

found analytically but there are effective numerical

methods for determining such distributions [35].

The simplest way to obtain an approximation of the

quasi-stationary distribution is to restrict considera-

tion to transient states (making the state space strictly

positive). By excluding zero from the state space, one

can establish a related process without an absorbing

state. This method has been applied in several

mathematical models [15, 37] and is valid when

the time to extinction is reasonably large [35]. More

recent results on stochastic logistic process can be

found in [27, 28, 38–40].

SOME BIOLOGICALAPPLICATIONS
OF BIRTH-AND-DEATH
PROCESSES
Rates and patterns of gene duplications
and evolution of multigene families
Gene duplication is one of the principal mechanisms

of genome evolution [41, 42]. In particular, in

multicellular eukaryotes, gene duplications gave rise

to numerous multigene families, and the mode of

evolution of genes within multigene families has

been the subject of many theoretical and empirical

studies. These studies reveal a high degree of within-

species homogeneity among duplicated sequences.

It has been proposed that a ‘correction’ mechanism

must have operated to spread mutations among

the paralogous genes in a multigene family, a

phenomenon dubbed concerted evolution [43–45].

Concerted evolution essentially means that members

of a multigene family do not evolve independently

of each other. A classic example of this type of gene

family is the cluster of rRNA genes in which all

several hundred paralogous genes have (nearly)

identical sequences, even in nontranscribed spacer

regions [46]. Thus, the genes of this cluster in

humans are more similar to one another than to

most of the rRNA genes of chimpanzees. This high

degree of sequence homogeneity within species

is believed to be achieved by gene conversion,

i.e. frequent interlocus recombination.

However, not all patterns of variation between

genes in multigene families can be explained by

concerted evolution [44, 47]. The best characterized

cases in point are the multigene families of

major histocompatibility complex (MHC) genes

and immunoglobulin genes (Ig). The members of

these families from the same species are not

necessarily more closely related to one another

than to the genes from different species. To char-

acterize the mode of evolution of these systems,

Nei and coworkers conducted phylogenetic analyses

of several multigene families of the MHC and Ig

systems [47]. The results show that the evolutionary

pattern of these families is quite different from that of

concerted evolution. To explain this distinct pattern,

a birth-and-death model of evolution has been

proposed [47, 48]. Under this model, paralogous

genes are produced by various mechanisms, includ-

ing tandem and block duplication, and some of

the duplicates diverge functionally whereas others

become pseudogenes and eventually deteriorate

beyond recognition. The end result of this mode

of evolution is a multigene family consisting of a

mixture of divergent groups of genes, with highly

similar sequences within groups plus a substantial

number of pseudogenes. The main difference

between the birth-and death evolution process and

concerted evolution is that, under the former, genes

in multigene families evolve independently of each

other. The results of phylogenetic studies on several

other gene families, including ubiquitins, histones

and various receptors, are consistent with the

predictions of the birth-and-death evolution model

[49–53].

The birth-and-death evolution model of multi-

gene family evolution, although originally presented

at the verbal level, allows the use of the classical

theory of birth-and-death processes to estimate the

rates of gene duplication and loss for groups with a

well-established phylogeny; in particular, such an

analysis has been performed for vertebrate evolution

over the last 500 million years [54]. This problem

is closely related to the problem of phylogeny

reconstruction. It has been shown that it is possible

to estimate the birth and death rates of lineages for

reconstructed phylogenies although they contain no

explicit information about extinct lineages [18, 55].

A null model in phylogenetics is usually one in

which, over a short time-span, each extant lineage
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has the same probability of dividing into two or

dying as any other lineage. Assuming that the birth

and death rates for each lineage are constant,

this model is a continuous-time, linear birth-and-

death process with transition rates ln¼ ln and

�n¼�n. The birth-and-death model relates the

number of extant lineages NT and the expected

number of lineages Nt at time t, which survive to

or at least have one descendant at time T, by the

formula [56]:

Nt

NT
¼

�� �

� exp �� �ð Þ T � tð Þ
� �

� �
:

If phylogeny can be reconstructed from the available

data, it is possible to produce a lineage-through-time

plot (number of extant lineages versus time). Fitting

the model to the plot (e.g. by the least square

method) allows estimating the rates of lineage birth

and death.

Cotton and Page applied this model to estimate

rates of gene duplication (l) and loss (�) [54]. They
showed that constant rates of gene duplication and

loss fit the pattern of recent gene family evolution

reasonably well, implying that, contrary to several

recent suggestions [57–59], there is no evidence of a

recent increase in duplication rate. The appearance

of such an increase is likely to be an artifact caused by

the fact that a greater number of recent duplications

have survived in extant genomes compared to older

duplications [18]. By contrast, the second, ancient

peak of duplications at �500 million years ago,

originally detected by Gu and coworkers [58], could

not be accounted for by the constant-duplication-

rate model and is likely to reflect a whole genome

(2R) or, at least, very large scale duplication in the

early evolution of vertebrates [54]. The estimates

of both duplication and loss rates obtained by Cotton

and Page (duplication rate of �0.00115Myr�1

lineage�1 and a loss rate of �0.00740Myr�1

lineage�1) are substantially (about an order of

magnitude) lower than previous estimates [42].

Origin of power law distributions
of genome-related quantities
A broad variety of phenomena in physics, biology

and the social sphere is described by power law

distributions [60–62]. In the field of genomics, the

power laws have been observed in the distribution of

the number of transcripts per gene, the number

of interactions per protein, the number of genes in

coexpressed gene sets, the number of genes or

pseudogenes in paralogous families, the number

of connections per node in metabolic networks

and other quantities that can be obtained by

genome analysis [61, 63–67]. These distributions

are described by the formula P(i)¼ ci��, where P(i) is
the frequency of nodes with exactly i connections
or sets with exactly i members, � is a parameter

which typically assumes values between 1 and 3,

and c is a normalization constant. More recently,

it has been shown that the distributions of

several genome-related quantities are best described

by the generalized Pareto function P(i)¼ c(iþ a)��,

where � >0, a are parameters [68–70]. At large

i (i� a), this distribution is indistinguishable

from a power law, but at small i, it deviates

substantially, with the magnitude of the deviation

depending on a.
As already pointed out in the preceding section,

in a somewhat different context, a birth-and-death

process is a natural mathematical framework for

modeling evolution of gene families, with duplica-

tion constituting a gene birth and gene loss treated

as a death event. The birth-and-death approach

has been applied to modeling the evolution of

paralogous genome family sizes [65, 70, 71], the

distribution of folds and families in the protein

universe [72] and protein–protein interaction

networks [73].

For the analysis of the evolution of gene family

sizes, which we consider here in somewhat greater

detail, a third elementary process, innovation, via

horizontal gene transfer or emergence of genes from

non-coding sequences, has been incorporated into

the model. Innovation is analogous to birth except

that an innovation event specifically adds a member

to class 1 (Figure 1) which corresponds to the

acquisition of a new gene by the analyzed genome.

Accordingly, this type of evolutionary models has

been dubbed birth-death-and-innovation models

(BDIM) [70]. Following [70], let us suppose that

we deal with a general birth-and-death process with

state probabilities given by Equation (1). Assume that

lN¼ 0, where N is the maximal possible multigene

family size. This means that the process under

consideration is a general birth-and-death process

with finite state space and reflecting boundaries (i.e.

l0 6¼ 0, �N 6¼ 0). Consequently, there is a stationary

equilibrium distribution p�. Let us define a function

�(n)¼ln�1/�n. The asymptotic of the stationary

distribution is completely defined by the asymptotic

behavior of �(n).
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Let us suppose that, for large n, the following

expansion is valid:

�ðnÞ ¼
�n�1

�n
¼ ns	 1� �=nþ oð1=nÞ½ �;

where s and � are real numbers and 	 is positive. The
following main result gives classification of possible

stationary distributions of the birth-and-death model

([70], Theorem 1):

(i) If s 6¼ 0 then p�n � �ðnÞs	nn�� , where �(n) is the
gamma-function;

(ii) If s¼ 0 and 	 6¼ 1, then p�n � 	nn�� ;

(iii) If s¼ 0, 	¼ 1 and � 6¼ 0, then p�n � n�� ;

(iv) If s¼ 0, 	¼ 1 and �¼ 0, then p�n � 1.

This theorem implies that, if the birth and death

rates of the process are balanced, in such a way

that expansion of �(n) has the form �(n)¼ 1� �/
nþ o(1/n), then the resulting stationary distribution

asymptotically tends to a power law. Analysis of the

fit of different versions of the BDIM to the empirical

distributions of gene family size in a variety of geno-

mes showed that the simplest form of BDIM that

gave a good fit to the empirical data was the second-

order balanced linear model (ln¼ l(nþ a), �n¼

�(nþ b), where a and b are constants), whereas the

simple model ln¼ ln, �n¼�n could be confidently

rejected ([70] and Figure 2). This result implied that

the evolution of individual genes within a family of

paralogs was not entirely independent, i.e. there was

at least a weak dependence of gene birth and death

rates on family size (or an ‘interaction’ between

paralogs, by analogy to chemical kinetics).

In a further development of this analysis, the

characteristics of evolution of the system, such as the

probability of formation of a family of the given size

before extinction and the mean times of formation

and extinction of a family of a given size, were

examined by analyzing the stochastic version of

BDIM [74, 75]. Given the published estimates of the

rates of gene duplication and loss [42], it has been

found that the linear model, which gives a good

approximation of the stationary distributions of

family sizes for different genomes, predicts comple-

tely unrealistic mean times for reaching the observed

sizes of the largest gene families. In computer

simulations with a large ensemble of genes, even

the minimum time required for the formation of the

largest family has been shown to be unrealistically

long. Thus, the linear BDIM is incompatible with

the estimates of the rate of genome size growth

derived from the empirical data (the use of the lower

estimates of duplication rates reported by Cotton

and Page [54] would only exacerbate the problem).

By contrast, models with the degree between 2 and 3

(e.g. for the model of degree 2, or the quadratic

model, ln¼ l(nþ a1)(nþ a2), �n¼�(nþ b1)(nþ b2)),
which involve stronger dependences between

the evolutionary rates of paralogs, resulting in a

self-accelerated evolutionary regime, could account

for faster evolution, although the mean times of

formation of the largest gene families are still too

long to fit the actual time scale of evolution.
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Figure 2: The fit of the observed size distribution of paralogous gene (domain) families in the human genome to the
second-order balanced linear BDIM (solid line). X axis: number of members in a family (family size); Yaxis: number of
families of a given size.The scale is double-logarithmic.The figure is from [70].
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However, it has been shown that the variance of the

time required for the formation of the largest families

is extremely large (coefficient of variation �1),

which means that some families would grow much

faster than the mean rate. Thus, the minimal time

required for family formation is more relevant for a

realistic representation of genome evolution than

the mean time. Monte Carlo simulations of family

growth from an ensemble of simultaneously evolving

singletons show [74, 75] that the time elapsed before

the formation of the largest family was much shorter

than the estimated mean time and approached

realistic values (Figure 3). The biological interpreta-

tion of the dependence between evolutionary rates

of paralogs that is intrinsic to the higher-degree

BDIM, is not immediately obvious. However, it is

tempting to propose that such dependence reflects

the fact that evolution of paralogous families,

particularly, large ones is an adaptive process

governed by positive Darwinian selection. Birth-

and-death models do not include selection explicitly

but the requirement for higher-degree BDIM to

present a realistic description of genome evolution

may imply the decisive role of selection in this

process.

Almost simultaneously, another model of gene

family evolution generating the observed power law

distributions has been proposed [76, 77]. Here, the

process under consideration is a simple linear birth-

and-death process with immigration. With a given

intensity �, there is an incoming Poisson process

which corresponds to appearance of new gene

families, supposedly, via duplication of a pre-existing

gene followed by radical modification. It has been

shown that, asymptotically, power law distribution

for the state probabilities is possible if l>� [76, 77].

In the model of Karev and coworkers [70, 74, 75],

the condition is the opposite, i.e. a balanced

BDIM with a power law asymptotic can be obtained

only if l<�, which is in full agreement with

the latest estimates of the duplication and loss

rates [54].

Modeling horizontal gene transfer
Comparison of the numerous sequenced genomes

from all three kingdoms has shown beyond reason-

able doubt that horizontal gene transfer (HGT)

occurred on numerous occasions, at least, in the

evolution of prokaryotes and unicellular eukaryotes

[78–82]. However, rigorous quantitative evaluation

of the amount of HGT is extremely hard which leads

to vast differences in opinion on the role of HGT in

evolution, from the concept of pervasive HGT fully

shaping prokaryotic genomes [82] to a much more

reserved view of HGT as a relatively minor

evolutionary factor [83–85].

The first evolutionary-theoretical analysis of

horizontal gene transfer in microbial populations

has been reported by Berg and Kurland who applied

the Moran model for the analysis of genetic drift

in a haploid population [86]. A more general model

of horizontal gene transfer, which includes both
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Figure 3: The time required for the formation of a first family with 1024 members (approximately, the size of the
largest paralogous families in eukaryotic genomes) starting from an ensemble of 3000 singletons (lower curve),
obtained by computer simulation, compared to themean time predicted by BDIMs of different degrees (upper curve).
X axis: degree of the model; Y axis: time in billions of years estimated using the gene duplication rate from [42].
The figure is from [74].
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intra- and inter-population gene fluxes, has been

recently formulated and analyzed [87]. In particular,

this work involved an attempt to identify the

conditions under which a horizontally transferred

sequence can be fixed or at least penetrate a

significant fraction of the population.

The model includes five parameters: inactivating

mutation rate u of the novel sequence, selection

coefficient s, invasion rate � (the rate with which

the individuals of the population acquire a new gene

from other populations), within-population hori-

zontal transmission (infection) rate 	 and population

size N. The state of the process n represents the

number of individuals carrying the novel sequence.

The rates are

�n ¼ ð1þ sÞð1� uÞnþ �N½ �
N � n
N þ 1

þ 	
n N � nð Þ

N

�n ¼ N � nþ uð1þ sÞn½ �
n

N þ 1

ð5Þ

According to the rates Equation (5), we deal with

a birth-and-death process with a finite state space

and reflecting boundaries (i.e. l0 6¼ 0,�N 6¼ 0). This

means that there is a stationary distribution for

which a good approximation can be found. This

stationary distribution can be used to estimate the

mean population penetration of the novel sequence

depending on the parameter values (Figure 4).

Figure 4 shows that, if the rate of invasion �N is

substantially lower than the rate of inactivating

mutation uN, significant penetration (on average)

can be reached only with high positive values of

(sþ 	)N, i.e. when the new gene is rapidly spread

within the population and/or confers a selective

advantage onto the recipient.

Berg and Kurland [86] considered the model

with rates Equation (5) and no inter-population

transfer, i.e. �¼ 0, and came to the conclusion that

horizontally acquired new genes can be fixed in a

population only when these sequences confer a

substantial selective advantage onto the recipient and

therefore are subject to strong positive selection.

If there is no invasion in the model, the new gene is

doomed to extinct. But a more detailed analysis of

the mean time to extinction and quasi-stationary

distributions shows that a new gene can penetrate a

significant part of the recipient population on its way

to extinction [87]. Taking into account the processes

of within-population transmission (infection) and

invasion leads to conclusions that are substantially

different from those of Berg and Kurland: if the rates

of these processes are non-negligible, horizontally

transferred sequences do get fixed or at least persist

in a significant part of the recipient population

for a long time, even if they are neutral or slightly

deleterious. In other words, complete analysis of

the state space given by Equation (5) shows that

fixation or persistence of horizontally transferred

genes in a population can be achieved via different

routes: it can happen either due to a high rate of

invasion or a high rate of infection, or substantial

selective value. Generally, the modeling results

are compatible with the notion that HGT, while

certainly not completely promiscuous or uniformly

Figure 4: (a) Contour plot of the average population penetration of a new (horizontally transferred) genewith the
fixed value uN¼ 0.5. (b) Level lines for 50% population penetration of a new gene for different values ofuN.
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rampant, could be a pivotal force in evolution,

at least in the prokaryotic world.

Somatic evolution of cancer cells
Recently, the Moran model has been applied to

model carcinogenesis [88–92]. The main assumption

in these studies is that cancer is initiated in tissue

compartments where only a relatively small number

of cells are at risk of mutating into a transformed state

escaping homeostatic regulation. In this case, the

evolutionary dynamics can be approximated by a

low-dimensional stochastic process with a linear

Kolmogorov forward equation that can be solved

analytically. Most of the time, the cell population

is homogeneous with respect to the relevant

mutations.

First, assume that there are two types of cells, A
and B, and let a and b be their numbers. Cells can

reproduce, mutate or die. Mutation is only allowed

from A to B with rate u. The total number of cells is

kept constant (N), N¼aþ b. Cells can have different

fitness. Under these assumptions, evolution of cells

can be described with the Moran process with rates

(2). The corresponding Markov process is a biased

random walk with one absorbing state, b¼N. If

u 6¼ 0, then, sooner or later, the system finds itself in

this absorbing state. Under conditions given in [88],

the probability of finding the system with b cells,

1 < b<N, is of the order of u	 1/N. The system

spends most of the time in the homogeneous states

b¼ 0 and b¼N. If we denote the state with all a as
A and the state with all b as B, then, approximately,

we have the two-state chain

A ���!
uN�ðsÞ

B;

where �(s), is the probability of fixation given by (3);

uN�(s) is the corresponding rate of jump from

one (almost) homogeneous state to another. This

stochastic process is described by the following

Kolmogorov forward equations:

dPA

dt
¼ �uN�;

dPB

dt
¼ uN�; Að0Þ ¼ 1; Bð0Þ ¼ 0:

The exact conditions when this approximation is

valid have been determined [88].

The inactivation of both alleles of a tumor

suppressor gene (TSG) implies a net reproductive

advantage for the affected cell and might lead to

clonal expansion. The inactivation of the first allele

of the TSG may be neutral or may lead to a selective

advantage or disadvantage. Thus, the process of

inactivation of a TSG can be modeled by the system

with three types of cells a, b and c. The mutational

network can be depicted as:

að1Þ �!
u1

bðs1Þ �!
u2

cðs2Þ;

where si, i¼ 1, 2 are the selection coefficients. Again,

the total number of cells is kept constant,

N¼aþ bþ c. In the context of this model, one

may be interested in estimating the mean time to

fixation for the third type of cells (e.g. those with

both TSG alleles inactivated).

To approximate the stochastic process under

consideration, one should take into account the

possibility of jumping from the state A to the

state C (a stochastic tunnel). It can happen if

a mutation from a to b gives birth to a lineage of

cells of type b that does not go to fixation (these

cells may go extinct due to random drift combined

with selection pressure, especially if s1 < 1), at

the same time giving birth to a lineage of cells

of type c.
The same kind of model was used to answer the

question whether genetic instability (an elevated

mutation rate) is an early (i.e. a potential cause) or

late (i.e. probable side-effect) event in tumorigenesis.

The path to cancer cells can be described by the

following mutational network:

X0 ! X1 ! X2

# # #

Y0 ! Y1 ! Y2

Here X0 are cells in which both copies of a TSG

are functional, X1 are cells with one functional

and one inactivated copy of TSG, X2 are cells with

both copies of TSG inactivated and Yi are cells with

zero, one or two inactivated TSG alleles and genetic

instability that can be caused by mutation in one

of nc genes. The possibility of stochastic tunnels

complicates the analysis but all possible cases can

be classified [88]. Mathematically, the question of

whether genetic instability is an early or a late event

is answered in terms of relative values of X2 and Y2.

In the work of Nowak and coworkers [89], the

threshold value of genes that can induce genetic

instability is found in terms of mutation rates and

selection coefficients. The main conclusion, based

on the estimates of possible parameter values, is that

genetic instability is an early event with likely causal

significance in the process of somatic mutation

leading to cancer.
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CONCLUSIONS
Mathematical modeling always had been trying to

find a compromise between simplicity of analysis and

requirements of realism. On the one hand, we have

extremely complex biological systems; on the other

hand, we need to formally address some quantitative

issues about these systems which often can be done

only through the use of mathematical models that

may rest on grossly over-simplified assumptions. On

some occasions, however, a particular mathematical

formalism seems to be ‘pre-adapted’ to a variety of

biological systems and can be profitably used to

model a diverse set of processes. Birth-and-death

stochastic processes are one class of such ‘lucky’

models, as we attempted to show in this review using

examples from several disparate areas of biology.

The utility of the theory of birth-and-death

processes seems to be owing to its two crucial

features. First, a huge variety of fundamental

biological processes can be described in terms of

elementary events that can be identified with birth-

and-death event. These include actual birth of a new

individual, cell division, mutation, gene duplication,

horizontal gene transfer from one individual of a

population to another (or from one population to

another), appearance of a new lineage (e.g. a species)

in a genealogy and others. Second, the mathematical

theory is well studied, relatively simple, many results

are known and the technique is flexible such that it

can be adjusted in cases when the standard birth-and-

death process is insufficient to describe the analyzed

process. The BDIM discussed here are one such case

where the additional elementary process of innova-

tion had to be introduced to adequately incorporate

for the existing basic understanding of genome

evolution [70]. Another, conceptually similar exam-

ple comes from population biology. Populations can

suffer dramatic declines from disease or food shortage

but, perhaps surprisingly, such populations can

survive for long periods of time and, although they

may eventually become extinct, they can exhibit an

apparently stationary regime. This behavior has

been successfully modeled using the so-called

birth-death-and-catastrophe process [12, 93, 94].

Another extension of a birth-and-death process is the

situation when transitions from a state are allowed

not only to neighboring states but also to some other

states within the given limits. Often, such systems

are governed by a quasi-birth-and-death process

(QBD process). These processes extend the classical

birth-and-death processes to the vectorial case, and

the tri-diagonal generator of parameters is substituted

by a block-tridiagonal matrix ([95] and references

therein). Furthermore, diffusion approximations of

birth-and-death processes have been developed and

characterized simultaneously with the standard ver-

sion ([5]; see [11] for a mathematical description).

Very recently, a diffusion approximation of the

BDIM has been developed as a specific application to

the analysis of evolution of gene families [96, 97].

It seems that, with the rapid accumulation of

genomic data, which include not only sequences but

also genome-wide information on gene expression,

genetic interactions between genes, protein–protein

interactions, regulatory networks and more, the role

of mathematical modeling in the new integrative

(systems) biology is going to be indispensable and

increasing for the foreseeable future. We believe that

birth-and-death processes comprise an essential part

of the mathematical framework of this new biology.
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