Methods and protocols for prediction of immunogenic epitopes

Joo Chuan Tong, Tin Wee Tan and Shoba Ranganathan

Submitted: 2nd June 2006; Received (in revised form): 14th September 2006

Abstract
T-cell recognition of peptide/major histocompatibility complex (MHC) is a prerequisite for cellular immunity. Recently, there has been an influx of bioinformatics tools to facilitate the identification of T-cell epitopes to specific MHC alleles. This article examines existing computational strategies for the study of peptide/MHC interactions. The most important bioinformatics tools and methods with relevance to the study of peptide/MHC interactions have been reviewed. We have also provided guidelines for predicting antigenic peptides based on the availability of existing experimental data.

Keywords: MHC; antigens/peptides/epitopes; prediction

INTRODUCTION
T-cell recognition of peptide/major histocompatibility complex (MHC) is a prerequisite for cellular immunity. The peptides that bind to specific MHC triggering T-cell recognition (T-cell epitopes) are targets for vaccine and immunotherapy development because they are the minimal essential peptide subunits that stimulate cellular immune responses. Precise identification of peptides binding to specific MHC alleles is important for the diagnosis and treatment of infectious [1], allergic [2], autoimmune [3] and neoplastic diseases [4]. The MHC genes in human, called human leukocyte antigen (HLA) are the most polymorphic human genes known [5]. By August 2006, 1964 protein-coding HLA alleles had been identified (http://www.anthonynolan.org.uk/HIG/). Binding studies show that each HLA allele recognizes a restricted set of peptides. Experimental approaches to determine HLA binding specificities is an expensive, laborious and time consuming process; and not applicable for studies involving large numbers of protein sequences.

Bioinformatics tools modeling the immune system network have played an instrumental role in advancing peptide vaccine discovery, with promising results in melanoma [6], multiple sclerosis [7], malaria [8] and anti-tumor vaccines [9]. T-cell epitope prediction tools help researchers identify allele-specific binding peptides, thus reducing the number of peptides to be synthesized and assayed. Tools for MHC supertype (superfamily) classification facilitate the identification of alleles with similar structural features and/or peptide specificities. More sophisticated bioinformatics tools enables the systematic scanning for candidate T-cell epitopes from larger sets of protein antigens, such as those encoded by complete viral genomes. These tools help researchers to identify regions with high concentrations of T-cell epitopes or immunological ‘hot spots’ and focus upon relevant experiments.
The aim of this article is to provide an overview of bioinformatics tools available for the study of peptide/MHC interactions.

PREDICTION OF MHC-BINDING PEPTIDES

Two main categories of specialized bioinformatics tools are available for prediction of MHC binding peptides—methods based on identifying patterns in sequences of binding peptides, and those that employ three-dimensional (3D) structures to model peptide/MHC interactions. The first group includes procedures based on binding motifs, quantitative matrices, decision trees, artificial neural networks (ANNs), hidden Markov models (HMMs) and support vector machines (SVMs). In contrast, the second category corresponds to techniques with distinct theoretical lineage and includes the use of homology modeling, docking and 3D threading techniques. An unequal amount and variety of techniques have explored for the two categories in the published reports, far fewer for structure-based approach due to higher complexity in development and longer computational time.

Simple sequence motifs

Discovery of anchor residues and sequence motifs

The earliest attempt to predict MHC-binding peptides started with the discovery that peptides binding to specific MHC alleles are functionally related and share residues with similar properties at various positions of their primary sequences. Class I and class II binding peptides contain residues with side-chains that fit into polymorphic cavities (or ‘pockets’) and bind to complementary residues of specific MHC alleles. These residues are called anchor residues because they ‘anchor’ the peptides firmly at various positions in the MHC binding cleft [10–13] and contribute to most of the binding interactions. This led to the definition of ‘peptide motif’ [10, 11, 14] for an array of class I and class II alleles. Numerous research groups, including Zhang et al. [15], Lipford et al. [16], Sette et al. [17], Sidney et al. [18], Parker et al. [19], Hammer et al. [20], Rammensee et al. [21], Meister et al. [22], D’Amaro et al. [23] and Rajapakse et al. [24] developed computational tools that scan peptides that fit these motifs. SYFPEITHI [25], a database for MHC ligands and binding motifs, was developed. As of August 2006 (last update in May 2006), SYFPEITHI [25] comprises more than 4500 peptide sequences known to bind class I and class II alleles from published reports (http://www.syfpeithi.de/).

It was later discovered that residues along other positions of a peptide also play a vital role in binding, and sequence motifs alone are inadequate to account for the comprehensive binding ability of a candidate peptide [26–28]. Immunodominant peptides without the required binding motifs were identified, and not all motif-conforming peptides do bind to the respective MHC alleles [29]. In an attempt to investigate the role of motifs in binding, Ruppert et al. [28] performed binding assays on peptides to HLA-A*0201 and found that only about 30% of motif-conforming peptides were actual binders. In practice, simple motif models have proven to be both nonsensitive and nonspecific [29]. This approach fails to detect binders not conforming to existing motifs and includes nonbinding sequences that fit the required patterns [22]. However, despite these limitations, this approach is still a useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders [30].

Binding matrices

Binding matrices represent an enhancement of simple motif models by correlating peptide residue positions to binding. This approach employs the use of tables containing $l \times 20$ coefficients where l corresponds to the length of the binding motif and 20 for each amino acid symbol [31, 32]. Consensus scores are obtained by summing, multiplying or averaging the matrix coefficients and compared against a predetermined threshold. In general, matrices are constructed using amino acid frequencies at different position of known binders or quantitative MHC-binding data. The former indicates the binding likelihood of a peptide sequence to the MHC molecule, while the later provides means of quantifying the peptide binding affinity. Examples of matrices derived from simple counting of amino acid frequencies at different position of known binders include EpiMatrix [33] and SYFPEITHI [25], while BIMAS [19] was developed by fitting of MHC-binding data.

More complex forms of matrix-based models have been developed to detect weak binding patterns and to account for noisy and collinear data. Reche et al. [34] employed the use of position-specific scoring matrices from a set of aligned binding
peptides to predict binders to an array of MHC class I and class II molecules. Peters et al. [35] introduced the use of stabilized matrix method (SMM) as predictor for HLA-A2 binding peptides. Nielsen et al. [36] applied a Gibbs sampler to detect weak sequence motifs in class I and class II binding peptides. Rajapakse et al. [37] utilized a multi-objective evolutionary algorithm to identify a consensus motif for I-A^β7. Guan et al. [38, 39] and Doytchinova et al. [40] employed the use of multivariate statistics to improve the predictive performance of their matrices. An additive equation was formulated to account for individual amino acid contributions at each position and interactions with neighboring amino acids. The matrix was subsequently solved through the use of partial least square regression.

Decision trees

Decision trees are rule-based models that classify patterns using a sequence of well-defined rules [41]. Position-specific binding motifs are converted into rules and embedded within the nodes of a decision tree. The resulting tree structure indicates amino acid properties that are strongly correlated with physicochemical properties of binding peptides. Peptide sequences are threaded through a series of nodes and the result of all node-to-node transitions are used to determine the outcome of prediction. Because of its capability to elucidate both linear and nonlinear problems, this approach has been adopted by several groups to identify higher-level rules for binding. Savoie et al. [42] constructed a decision tree using the BONSAI program to investigate T-cell preference and adverse motifs for HLA-A[*]0201 binding peptides. Segal et al. [43] adopted a similar tree-structured technique to predict peptides binding to H2-K^b. An example of a decision tree network is shown in Figure 1.

Artificial neural networks

ANNs are connectionist models particularly well suited to perform classification and complex pattern recognition tasks [44]. ANNs can encode nonlinear data and have been used extensively for prediction of peptide binding to both class I and class II alleles [32, 45–50]. Peptide features are represented by amino acid descriptors such as composition, hydrophobicity, volume and charge. The descriptors are used to train an ANN for classifying peptides into binders and nonbinders. An example of ANN architecture is illustrated in Figure 2. An investigation on the predictive performance of ANNs revealed that this approach gradually outperforms motifs, matrices and HMMs with increasing peptide data [30]. A major drawback of ANN is the requirement of a fixed input length. As such, a given ANN model can only predict binding peptides that are of the same length as those in the training data set. This constraint restricts the ability of ANN to predict epitopes with length that differ from those used in the trained network.

Various groups have developed hybrid versions of ANN for peptide/MHC prediction. Nielsen et al. [50] described a combination of a series of neural networks using several sequence coding strategies including an HMM encoding to improve the predictive power of the system. Brusic et al. [46] integrates the strength of matrix models and evolutionary algorithm (EA) for processing ANN training set. New alignment matrices were selected by EA based on evolutionary principles. Each parent (matrix) produces two children consisting of an exact copy of itself and a mutant copy, and passes the child with the higher fitness value to the next generation. The highest scoring alignments from the final generation matrices were subsequently fed into ANN for training.

Hidden Markov models

HMM belongs to a type of probabilistic graphical models that have been successfully applied to a wide range of applications in statistical pattern recognition and classification [51]. In order to overcome the potential limitations of ANNs, HMMs have been applied to predict peptides binding to MHC [52]. Similar to decision trees and ANNs, HMMs have the ability to cope with nonlinear data and are suitable for representing time-series sequences having flexible lengths. Associated with each HMM is a series of discrete-state, time-homologous, first-order Markov chain (MC) with suitable transition probabilities between states and an initial distribution. Each state consists of a discrete or continuous distribution over possible emissions or outputs. These outputs are generated when particular state is visited or during transition from state to state. Transitions between states follow a set of transition and emission probabilities. The transition probability is the probability of moving from one state to another via a connected edge, and the emission probability is the probability of emitting a particular symbol at a state. The sequences of states underlying MC are hidden and cannot be observed, hence the name hidden
Markov model. The probability of any sequence, given the model, is computed by multiplying the emission and transition probabilities along the path.

The use of HMM for peptide/MHC prediction was first reported in the literature [52] using two different HMM topologies: profile HMM and fully connected HMM. Profile HMMs (Figure 3A) are linear left-right models where the underlying directed graph is acyclic, with the exception of loops, hence supporting a partial order of the states. The profile HMM architecture [53] consists of three classes of states: the match state, the insert state and the delete state; and two sets of parameters: transition probabilities, and emission probabilities. The match and insert states always emit a symbol, whereas the delete states are silent states without emission probabilities. A fully connected HMM (Figure 3B) consists of states that are pairwise connected such that the underlying digraph is complete. There are no distinguished starting and terminating states and the transition matrix does not contain any zero entries with the exception of diagonal entries, which correspond to loops or self-transitions. Because there is no constraint on the structure of a fully connected HMM, this model permits the representation of more than one sequence pattern concealed in the training data.

Support vector machines
SVMs are statistical learning methods based on the structural risk minimization principle [54]. Similar to decision tree, ANN and HMM, it has the ability to handle both linear and nonlinear data. Every peptide sequence is represented by specific feature vector assembled from encoded representations of residue properties such as amino acid composition, hydrophobicity, polarity, charge, bulkiness and solvent accessibility. Parameters are trained by mapping input vectors into a high-dimensional feature space and maximizing the margin between the binders and nonbinders with an optimal separating hyperplane. SVM outperforms ANN and decision tree in the...
absence of large training data set [55] and has been embraced by several groups including Dönnes and Elofsson [56], Bhasin and Raghava [57] and Bozic et al. [58] for predicting class I and class II binding peptides. Hybrid models based on ANN and SVM have also been developed by Bhasin and Raghava [59] for consensus and combine prediction of T-cell epitopes.

Structure-based approach

Protein threading

Protein threading [60] or side-chain conformational search [61] involves computing an alignment between a target amino acid sequence and the spatial positions of a 3D structure. In the context of peptide/MHC modeling, this involves substituting the backbone coordinates of a source peptide \((P_1, P_2, \ldots, P_n) \) that is bound to a MHC molecule of interest with the target peptide sequence \((S_1, S_2, \ldots, S_n) \) by replacing \(P_i \) with \(S_i \). A search for the best side-chain conformations is usually performed, and a scoring scheme is subsequently applied to discriminate the binders from nonbinders.

Altuvia et al. [62] demonstrated the use of protein threading to detect binding peptides not conforming to HLA-A*0201 binding motifs using the statistical pairwise potential table of Miyazawa and Jernigan [63, 64]. This was subsequently extended to the analysis of peptides binding to an array of class I alleles [65, 66]. This approach successfully identified peptides binding to MHC molecules with hydrophobic binding pockets but not to MHC molecules with hydrophilic, charged pockets. In order to circumvent the problem, Kangueane et al. [67] introduced the use of knowledge-based rules to discriminate binders from nonbinders based on the number of observed atomic clashes between the MHC and its bound peptide, and the number of solvent exposed hydrophobic residues on the modeled peptide. The problem was later solved by Schueler-Furman et al. [68] through the use of a different pairwise potential table [69] that described hydrophilic interactions more appropriately. A hybrid technique that combines MHC class I sequences and peptide/MHC binding affinities was also proposed [70]. In an attempt to improve the accuracy of threading algorithms, Bui et al. [71] incorporated explicit water molecules at the peptide/MHC interface. An alternative discrimination scheme was also introduced by Doytchinova and Flower [72] that employ similarity indices from 3D quantitative structure-affinity relationship (QSAR) studies.

Homology modeling

Homology modeling [73, 74] employs the use of available homologous protein structure(s) to predict the unknown structure of a related amino acid sequence. In the context of peptide/MHC prediction, the aim is to model the bound conformation of a peptide sequence with an unknown structure using the 3D structure of other bound peptides to homologous MHC molecules. Hammer et al. [75] constructed a series of synthetic peptide/HLA-DRB1*0402 models from HA peptide/HLA-DRB1*0101 crystallographic structure to identify specific patterns of peptide binding. Rognan et al. [76] and Logean et al. [77] applied a similar two-step approach to construct the bound conformation of peptides to an array of class I alleles. Their modeling procedure begins by selecting peptide termini residues based on homology to the most similar MHC-bound peptide with available crystallographic structure. The remaining residues were subsequently constructed by satisfaction of spatial restraints using a knowledge-based loop search procedure. Several attempts to characterize TCR/peptide/MHC interaction were also reported. Michielin et al. [78] successfully developed a model of T1 T-cell receptor (TCR)/PbCS/H2-Kd complex based on its homology with the 2C TCR, the A6 TCR/Tax/HLA-A2 complex, the 1934.4 TCR Vβ chain, the 14.3.d TCR Vβ chain, and the H2-Kb ovalbumine peptide. Buoyant by the excellent results, Michielin et al. [79] applied the methodology to identify critical residues of the A6 TCR that interacts with peptide/HLA-A2 complex. Almagro et al. [80] constructed a model of 5C.C7/MCC 93-103/I-Ek to study the structural role for TCR α1, α2, β1 and β2, in MHC interaction. A framework was subsequently proposed to create testable hypothesis about TCR recognition.

Docking

Computer-simulated ligand binding or docking is a powerful technique for investigating intermolecular interactions. In general, the purpose of docking simulation is 2-fold—(i) to find the most probable translational, rotational and conformational juxtaposition of a given ligand-receptor pair, and (ii) to evaluate the relative goodness-of-fit or how well a ligand can bind to the receptor. Several docking techniques have been developed to address the
peptide/MHC combinatorial problem. Caflisch et al. [81] developed a combinatorial buildup algorithm to dock the influenza matrix peptide 58–68 to HLA-A*0201. Rosenfeld et al. [82, 83] utilized a multiple copy algorithm to identify probable termini peptide conformations and constructed the intervening sequence using a loop closure algorithm. Lim et al. [84] and Antes et al. [85] employed molecular dynamics (MD) simulation to examine the structures of class I peptide/MHC complexes. Bordner and Abagyan [86] applied the use of Monte Carlo simulations to predict the binding geometry of peptides to MHC class I alleles, while hybrid approaches that integrated the strength of Monte Carlo simulations and homology modeling were also applied to dock peptides to an array of class I and class II alleles [87–91].

PREDICTION OF MHC SUPERTYPES
The grouping of HLA allelic variants into superfamilies or supertypes on the basis of their structural features and/or binding specificities is important for development of epitope-based vaccines [92, 93]. Two groups of clustering techniques can be recognized in the literature reviewed—methods based on peptide specificities, and those that classify MHC alleles using 3D structural features.

Clustering using peptide specificities
A strategy for the development of epitope-based vaccines with wide population coverage is to identify HLA alleles that are present in most individuals from all major ethnic groups and ensuring that these alleles bind to at least one of the peptides in the vaccine. Accordingly, promiscuous peptides that bind more than one HLA allele are ideal for such purpose. By clustering MHC alleles on the basis of their peptide binding specificities, promiscuous T-cell epitopes that are representative of large proportion of human population can be identified. Stumioo et al. [94] demonstrated that only one to three amino acids within these binding pockets are sufficient to classify an allele to a particular class I or class II supertype. HLA-A, -B, -C, -DR, -DQ and -DP alleles were subsequently grouped into three, three, two, five DRs, three DQs and four DPs clusters, respectively. Kangueane et al. [100, 101] defined critical polymorphic functional residue positions for HLA-A, -B and -C alleles and grouped 47% of 295 A alleles, 44% of 540 B alleles and 35% of 156 C alleles to 36, 71 and 18 groups, respectively.

Clustering using MHC structural features
An alternative approach for HLA supertype definition is to identify alleles with similar binding specificities from a structural interaction viewpoint. HLA alleles with similar binding specificities share common structural features within the peptide binding cleft. The binding clefts contain cavities (or anchor ‘pockets’) that correspond to primary and secondary anchor positions on the binding peptide. Doytchinova et al. [98, 99] demonstrated that only one to three amino acids within these binding pockets are sufficient to classify an allele to a particular class I or class II supertype. HLA-A, -B, -C, -DR, -DQ and -DP alleles were subsequently grouped into three, three, two, five DRs, three DQs and four DPs clusters, respectively. Kanguane et al. [100, 101] defined critical polymorphic functional residue positions for HLA-A, -B and -C alleles and grouped 47% of 295 A alleles, 44% of 540 B alleles and 35% of 156 C alleles to 36, 71 and 18 groups, respectively.

PREDICTION OF T-CELL EPITOPE REPERTOIRE INSIDE ANTIGENS
T-cell epitope prediction tools can be configured to identify high-density clusters of potential MHC-binding sequences within antigens. Meister et al. [22] developed a matrix-based clustering technique to identify high-density clusters of MHC alleles. By defining immunological hot spots as antigenic regions of up to 30 amino acids, Srinivasan et al. [102] and Zhang et al. [103] showed that T-cell epitopes clustered in certain regions of protein antigens such as SARS-CoV, dengue virus proteins, myelin oligodendrocyte glycoprotein, bee venom protein and hepatitis C virus 1B protein in a HLA supertype-dependent manner. By targeting these high-density regions of promiscuous T-cell epitopes,
the process of epitope discovery for vaccine development may be accelerated.

MODELLING ISSUES

The accuracy of a prediction model is highly dependent on the quantity and quality of available experimental data. Care should also be taken to ensure that there is no biasness in the data set. This section discusses the issues related to peptide data which have implications on the selection and performance of prediction model.

Data quantity

The availability of known peptide binders to specific alleles has a direct impact on the choice and quality of prediction model. Simple sequence motif models critically depend on the availability of training data set and are not applicable where data is unavailable. Where there is limited data or biasness in experimentally determined binding motifs, these models suffer from poor accuracy. A decade after peptide binding motif for pemphigus vulgaris (PV)-associated DR4 molecules was described [104], it was discovered that these motifs were insufficient for identification of PV epitopes presence of register shifts and polymorphisms in the binding registers [88]. In such scenarios, structure-based techniques are the only alternative predictors of peptide binders. However, the development of computational tools under this category is severely impeded by inherent complexities in terms of model building, data fitting and computational speed. As the number of known peptide binders increases, simple sequence motifs become more useful predictors, especially where rapid large-scale screening is involved. SVM outperforms ANN and decision tree using small training data set of 36 binders and 167 nonbinders [55]. An investigation on the predictive performance of ANNs revealed that this approach gradually outperforms motifs, matrices and HMMs with increasing peptide data [30]. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binders [30].

Data Quality

Noise and errors in the data sets have an adverse effect on the construction of useful predictive models. This may be a result of noncritical selection of peptides for constructing training data sets using existing binding motifs. A number of existing predictors have been built using ‘virtual’ binding and nonbinding peptides constructed from experimental binding motifs. While useful in practice, the utilization of such ‘virtual’ data requires dealing with imperfect and fuzzy measurements. Such forms of imprecise measurements are also observed when there is a need to combine data from multiple experimental sources. In such scenario, statistical techniques capable of handling fuzzy nonlinear data are recommended. Brusic et al. [105] investigated the impact of noise in data sets for constructing simple matrix models. They demonstrated that 5% of errors in a data set will double the number of data points required to build a matrix-based model. On the contrary, the same magnitude of error does not significantly affect the performance of ANNs [106].

Data biasness

Over-fitting occurs when a predictive model adapts too well to the training data and includes random disturbances in the training set as being significant. As these disturbances do not reflect the underlying distribution, the performance of the machine learning techniques on the given data set is affected. This over-fitting problem is typically avoided by using a regularizer [107, 108] that replaces the observed amino acid distribution by its estimator. Various techniques have been developed to avoid the over-fitting problem. Brusic et al. [46] pre-processed the training data set using a weighting scheme to penalize highly similar peptides. Peters et al. [34] introduced an additional term to the minimization function of SMM. The equation was subsequently solved using a generalized-reduced-gradient method. In order to facilitate transparent evaluation of newly developed prediction methods without data biasness and noises, there is a need for a framework for standardized side-by-side comparison of prediction methods as well as standardized training and testing data sets. The new framework proposed by Peters et al. [109] is excellent for such purposes.

A ROADMAP FOR THE PREDICTION OF MHC-BINDING PEPTIDES

In order to make sense of the bewildering array of tools available for prediction of MHC-binding peptides, we present a simplified solution as a roadmap, with a small set of selected options for each step. Specific resources, as listed in Table 1,
have been selected according to their usefulness and performance. Some of the most reliable tools, such as MULTIPRED [102, 103], have already been used as base algorithms to develop more advanced methods for the analysis of antigenic hotspots with antigens. These programs have been demonstrated to be consistent independently or efficient as a part of different analysis pipelines and we wish to recommend these as a general ‘modus operandi’ for small or large scale T-cell epitope-based projects.

For MHC alleles that have been extensively studied, sequence-based computational tools such as SYFPEITHI [25] or EpiMer [110] can effectively identify potential MHC-binding peptides. MULTIPRED [103] or TEPITOPE [111] can be used to predict promiscuous MHC class I and class II peptide ligands for a broad range of HLA-binding specificity at supertype level. VAGAT (http://sdmc.i2r.a-star.edu.sg/vagat/) is a viral antigenome analysis tool built on top of MULTIPRED [103] for systematic analyses of antigenic diversity from a set of viral protein sequences. Where novel MHC class I alleles are concerned, structure-based predictive strategies such as EpiDock [112], which combines homology modeling with a free energy scoring function FRESNO, can be applied for prediction of candidate binding peptides.

The PAProC [113, 114] or NetChop [115, 116] server can be used to predict potential cleavage sites of the human proteosomes. PREDTAP [117] can be applied to predict transporter associated with antigen processing (TAP) binding peptides. For prediction of noncontinuous peptides [118], predicted peptide fragments may be combined and input into any of the above recommended software for prediction. The IEDB [109] and Epijen [119, 120] provide integrated tools for predictions of antigen processing through the MHC class I antigen processing pathway. In addition, IEDB [109] contains tools for computing the population coverage of epitopes in different ethnicities, as well as the degree of conservancy of an epitope within a given protein sequence set at different degrees of sequence identity are also provided.

FUTURE DIRECTIONS

Recent advancements in computational modeling techniques and computational infrastructures are enabling immunologists to better explore the highly complex nature of the human immune system. The authors’ view is that the next decade will bring increased focus on the development of computational techniques for large-scale analysis of the immune system at the system level.

<table>
<thead>
<tr>
<th>Name</th>
<th>Methods</th>
<th>Coverage</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTIPRED</td>
<td>ANN, HMM</td>
<td>MHC class I and II binding</td>
<td>http://research.i2r.a-star.edu.sg/multipred/</td>
</tr>
<tr>
<td>SYFPEITHI</td>
<td>Binding matrices</td>
<td>MHC class I and II binding</td>
<td>http://www.syfpeithi.de/</td>
</tr>
<tr>
<td>EpiMer</td>
<td>Binding matrices</td>
<td>MHC class I and II binding</td>
<td>http://epivax.com</td>
</tr>
<tr>
<td>TEPITOPE</td>
<td>Binding matrices</td>
<td>MHC class I and II binding</td>
<td>http://www.vaccinome.com</td>
</tr>
<tr>
<td>VAGAT</td>
<td>ANN, HMM</td>
<td>Antigenome analysis</td>
<td>http://sdmc.i2r.a-star.edu.sg/vagat/</td>
</tr>
<tr>
<td>EpiDock</td>
<td>Homology modeling</td>
<td>MHC class I binding</td>
<td>http://bioinfo-pharma.u-strasbg.fr/cheminformatics-tools.php</td>
</tr>
<tr>
<td>PAProc</td>
<td>Networks-based model</td>
<td>Proteosome cleavage</td>
<td>http://www.paproc.de/</td>
</tr>
<tr>
<td>PredTAP</td>
<td>ANN, HMM</td>
<td>TAP binding peptides</td>
<td>http://antigen.i2r.a-star.edu.sg/predTAP/</td>
</tr>
<tr>
<td>SMM</td>
<td>Binding matrices</td>
<td>MHC class I binding</td>
<td>http://zlab.bu.edu/SMM</td>
</tr>
<tr>
<td>RANKPEP</td>
<td>Binding matrices</td>
<td>MHC class I and II binding</td>
<td>http://bio.dfci.harvard.edu/Tools/rankpep.html</td>
</tr>
<tr>
<td>IEDB</td>
<td>ANN, SMM, Average</td>
<td>Proteosome cleavage, TAP transport and MHC class I binding</td>
<td>http://www.immuneepitope.org/tools.do</td>
</tr>
<tr>
<td>Epijen</td>
<td>Quantitative matrices</td>
<td>Proteosome cleavage, TAP transport and MHC class I binding</td>
<td>http://www.jenner.ac.uk/Epijen/</td>
</tr>
</tbody>
</table>
At the level of T-cell epitopes, the proteasome- and TAP-dependent pathways play important roles in influencing the final peptide composition. In recent years, important steps toward the integration of computational tools modeling the different sub-components of the antigen processing pathway have been made. Dynamic activities over the past year have seen at least six reports of algorithms that integrated MHC class I peptide predictions with TAP and proteasomal cleavage specificities [109, 119–124]. These techniques are still in their infancy and need to be further developed and thoroughly tested. The recent discovery that T-cell epitopes may be formed by the fusion of two short noncontinuous peptide fragments [118] suggests that a much larger repertoire of T-cell epitopes exist, and T-cell epitope prediction is no longer confined to a linear search space. Accordingly, there is a need to adjust existing computational strategies to take into account the presence of nonlinear T-cell epitopes. Including considerations of secondary determinants such as longer class I binding peptides [125–127], expression levels of MHC locus products and their corresponding life-span may also improve the extant tools.

At the haplotype level, there is likely to be increasing focus on the development of computational tools targeting peptides binding to a complete set of MHC molecules in a model organism. An example of such system is PRED$^{\text{BALB/c}}$ [128] which focuses on prediction of peptides binding to the H$^2^d$ haplotype of BALB/c mouse. Rapid progress in the development of computational infrastructures provides the foundation for large-scale simulation of more complex mammalian immune system. An example of such initiative is the European Virtual Human Immune System Project (http://www.immunogrid.org) that connects eight institutions to establish an infrastructure for modeling the human immune system at molecular, cellular and organ levels. These technologies permit a more complete view of the immune responses of a target organism with direct implications in peptide-based vaccine design. Therapeutically, it facilitates the identification of immunogenic epitopes as targets for selectively diminishing or altering immune reactions with minimal side effects according to the patient’s genetic profile. This form of personalized immunotherapy can help prevent, ameliorate or cure disease and is particularly useful where treatment options are unsuccessful, limited or nonexistent [129, 130].

Key Point

- Several bioinformatics tools have been developed to identify T-cell epitopes to specific MHC alleles to facilitate vaccine development. This article examines existing strategies that utilize computational approaches for the study of peptide/MHC interactions. The most important bioinformatics tools and methods with relevance to the study of peptide/MHC interactions have been reviewed. We have also provided guidelines for predicting antigenic peptides based on the availability of existing experimental data.

CONCLUSIONS

The use of peptides that bind to MHC to induce specific T-cell mediated immune responses is a very attractive and well-studied field. Bioinformatics tools for prediction of T-cell epitopes are now a standard methodology [30, 131]. In silico T-cell epitope mapping, combined with in vitro and in vivo verification, accelerates the discovery process by approximately 10–20-fold [29]. Development of sophisticated bioinformatics tools will provide a platform for more in-depth analysis of immunological data and facilitate the construction of new hypotheses to explain the complex immune system function.

Acknowledgments

This project has been funded in part by the National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services, USA (Grant #5 U19 AI56541 & Contract #HHSN266200400085C).

References

75. Hammer J, Gallazzi F, Bono E, et al. Peptide binding specificity of HLA-DR4 molecules: correlation with...

119. Doytchinova IA, Flower DR. Class I T-cell epitope prediction: improvements using a combination of proteasome cleavage, TAP affinity, and MHC binding. Mol Immunol 2006;43:2037–44.

