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Abstract
Since its launch in 2004, the open-source AMOS project has released several innovative DNA sequence analysis
applications including: Hawkeye, a visual analytics tool for inspecting the structure of genome assemblies; the
Assembly Forensics and FRCurve pipelines for systematically evaluating the quality of a genome assembly; and
AMOScmp, the first comparative genome assembler. These applications have been used to assemble and analyze
dozens of genomes ranging in complexity from simplemicrobial species through mammalian genomes.Recent efforts
have been focused on enhancing support for new data characteristics brought on by second- and now
third-generation sequencing. This review describes the major components of AMOS in light of these challenges,
with an emphasis on methods for assessing assembly quality and the visual analytics capabilities of Hawkeye. These
interactive graphical aspects are essential for navigating and understanding the complexities of a genome assembly,
from the overall genome structure down to individual bases. Hawkeye and AMOS are available open source at
http://amos.sourceforge.net.
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INTRODUCTIONANDCONTEXT
Despite dramatic advances in sequencing technolo-

gies, we are still far from automating the decoding of

a complete sequence from a DNA sample [1].

Instead, sequencing machines generate large num-

bers of short DNA fragments that need to be algo-

rithmically assembled together into a reconstruction

of a genome. The development of genome assembly

algorithms, started in the late 1980s, was critical to

the success of genomics as it provided a way for re-

searchers to explore the genomes of organisms des-

pite the limitations of sequencing technologies.

Over the years, numerous genome assemblers

have been developed, among which we highlight
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just a few of the most memorable: phrap—one of the

most widely used assemblers of the first generation

sequencing era; Celera Assembler [2, 3]—the soft-

ware originally developed at Celera Genomics and

used to assemble the human genome through a

whole-genome shotgun sequencing approach (as

opposed to the BAC-by-BAC approach employed

by the Human Genome Consortium); Velvet [4]—

one of the first among a number of assemblers devel-

oped specifically for second generation sequencing

data; and ALLPATHS-LG [5]—perhaps the most

effective genome assembler for second generation

sequencing data today. These, and the many other

assemblers used in the community, have contributed

to the reconstruction of tens of thousands of viruses

and bacteria, as well as hundreds of eukaryotes,

including the genomes of many mammals (human

[6], mouse [7], cow [8], panda [9], etc.), fishes (zebra-

fish [10], fugu [11], etc.) and plants (Arabidopsis [12],

rice [13], papaya [14], etc.) to name a few.

These successes hide an important fact—genome

assembly is a difficult computational problem, and no

genome assembler can fully reconstruct a large

genome from short fragments without errors.

Genome assembly is also computationally demand-

ing: it falls in a class of computational problems called

NP-hard [15], or problems that can only be exactly

resolved by exhaustively trying all possible combin-

ations. This is simply not tractable for large genomes

with billions of reads, so all genome assemblers

employ heuristics to accelerate the computation

based on certain assumptions about the underlying

data. However, these heuristics may also introduce

errors by applying incorrect simplifications.

After a genome assembler has produced a result, it

is natural to ask if the assembly is correct and if one

assembly is better than another. Answering these

questions is complex, especially because they require

consideration across a wide range of scales spanning

from individual bases, to gene sequences and other

localized regions, and finally to the large-scale

chromosome structure. It would be preferable to

measure quality across all scales simultaneously by a

single metric, but no such metric exists. Instead, the

most commonly used metric for reporting assembly

quality is the N50 contig or scaffold size, which is a

weighted median size such that half of the genome

has been into assembled into contigs or scaffolds

larger than the N50 value. This metric measures

the overall connectivity of the assembly, but says

nothing about the correctness. Scaffolds or contigs

can be trivially inflated to any size if the assembly

algorithm is allowed to include very low quality or

conflicting information, and size measurements do

not address if a given gene or a given chromosome

has been assembled correctly. Indeed it may be

impossible to simultaneously measure quality across

the entire range of scales given the complexity of the

data [16].

These challenges motivated us to develop the

interactive tool, Hawkeye, for assessing genome

assemblies [17]. One of the key strengths of

Hawkeye is that it supports analysis at any scale:

users are initially presented with visualizations and

reports of the overall assembly characteristics, from

which they can zoom and filter to inspect scaffolds,

contigs, reads, or even individual bases. The views

within Hawkeye are integrated to include all rele-

vant information into the display, and whenever pos-

sible the views are interactive, allowing on-the-fly

clustering or selective filtering of particular data

types.

In addition, Hawkeye leverages the AMOS as-

sembly forensics pipeline to systematically identify

erroneous regions of an assembly based on statistical

inconsistencies in the data, such as clusters of mate-

pairs whose separation fall outside the expected

library distribution [16]. Hawkeye can highlight

these regions to guide users to the most likely

mis-assembled regions, and aid users in fixing any

problems. Moreover, we have developed a new

visual representation of assembly quality called the

Feature-Response Curve (FRCurve) [18] that

allows users to visually compare and rank multiple

assemblies of the same data, again leveraging the

inconsistencies identified by our assembly forensics

pipeline to assess relative quality in addition to

connectivity.

The advantages of a visual analytics approach for

these analyses are numerous. The data have very high

dimension and an interactive display enables users to

zoom selectively into different portions of the assem-

bly to display details that would be lost at a fixed

resolution. Hawkeye also employs semantic zooming

so that the initial display provides an abstract over-

view, which progressively becomes more detailed

and more concrete as users zoom in. The visual dis-

play is well suited for the highly advanced pattern

recognition capabilities of the human mind, and

empowers users to identify trends and unanticipated

relationships that might otherwise be overlooked.

For example, certain mis-assemblies are easily
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identified by eye as clusters of mis-oriented mates.

Similarly, technical artifacts of PCR duplicates,

which create clusters of reads with nearly exactly

the same coordinates, can be readily identified.

Supporting this type of novel analysis is critical in

light of evolving sequencing technologies and di-

verse data types, so that users can visually identify

trends before a formal analysis pipeline has even

been created to search for them.

METHODS
AMOSmodular design
The development of AMOS was motivated by the

fact that scientists had been increasingly using

genome assembly algorithms for ‘non-standard’ or

experimental applications. Some examples are the as-

sembly of viral genomes, metagenomic data, or data

from RNA-seq or CHIP-seq experiments. Each of

these possesses qualities that violate some of the as-

sumptions built in to standard genome assemblers.

Most existing genome assemblers were not designed

with flexibility in mind and are difficult to adapt to

these new uses. In contrast, AMOS is designed to be

flexible and provides well-defined APIs between as-

sembly modules, allowing for new components to be

added or replaced to meet the challenges of a new

experiment or assay (Figure 1). As such, many of the

AMOS pipelines extensively reuse the components

developed under a different context. For example,

the de novo assembler Minimus and the comparative

assembler AMOScmp use several of the same com-

ponents, except that Minimus has its own read over-

lapping module, while AMOScmp infers overlaps by

mapping reads to a reference genome. The compo-

nents of these pipelines interact by iteratively refining

data stored within a central database called a ‘bank’,

which stores the primary assembly objects (reads,

contigs, scaffolds, etc.) and associated information.

The AMOS package includes a number of assem-

bly tools, including:

� Minimus [19]—an assembler designed for simple

assembly tasks such as the assembly of viral gen-

omes or individual genes. Minimus was independ-

ently enhanced by users of our software into a new

assembly package called Minimo that was also

incorporated into the AMOS package.

� AMOScmp [20]—a comparative assembler that

can use the reference of a closely related genome

as a template during assembly.

� Bambus [21]—a standalone scaffolding package,

recently extended to include features necessary

for assembling metagenomic datasets.

� Hawkeye [17], AMOSvalidate [16] and the

FRCurve [18]—assembly visualization and assem-

bly validation packages that can detect mis-

assemblies using a variety of internal consistency

checks, and described in more detail below.

Conversion utilities are a critical, but often under-

appreciated component of a bioinformatics package

that allows the software to interact with the diverse

file types and data representations developed by the

community. AMOS includes a number of conver-

sion utilities that allow it to process data from a var-

iety of input sources (e.g. fasta, fastq, TraceArchive

xml files, etc.) and to output the data in commonly

used assembly formats (fasta, ace, agp, sam/bam, etc.)

These input/output conversion utilities also allow

users to take the full output information from an-

other genome assembler and load it into the central

AMOS bank to either improve the assembly through

AMOS-specific utilities (e.g. Bambus could be used

to scaffold the data produced by another assembler),

or to validate its quality as explained below.

The AMOS source code, manual, mailing lists

and bug tracker are available at the project website

hosted at SourceForge (http://amos.sourceforge

.net). The source code is primarily written in

Cþþ, with selected components written in Perl

and Python. As such, AMOS runs in almost any

Unix environment including Linux, Mac OS X

and Windows (under Cygwin). Several compo-

nents of AMOS require the Boost Cþþ libraries

Figure 1: AMOS modular design. Individual assembly
modules, such as for computing overlaps between
reads (hash-overlap), for refining the overlaps between
reads into contigs (unitigger), and the GUI Hawkeye,
interact using well defined APIs through a lightweight
central database called an AMOS bank.
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(http://boost.org), AMOScmp and AMOSvalidate

rely on the Nucmer aligner [22], and Hawkeye

requires the graphics library Qt 4.x (http://qt

.nokia.com). Unlike some other graphical assembly

viewers, AMOS and Hawkeye do not require a

web or database server and can be run as standalone

applications on a desktop.

Assessing assembly quality: Hawkeye,
forensics and the FRCurve
The initial development of AMOS was spurred by

the need for more flexible assembly pipelines, but the

visualization and validation components of AMOS

came from a need to understand what was happening

within assemblies. The term ‘assembly forensics’ was

coined after tracking down subtle mis-assembles

contained in the draft genomes of Bacillus anthracis
that were sequenced as part of the Amerithrax inves-

tigation [23]. In cases where the sequence output by

an assembler did not agree with expectation, a

deeper view than simple contig metrics was required.

To this end, Hawkeye was developed to give devel-

opers and technicians the tools needed to decipher

how a genome was reconstructed. To cope with the

often daunting complexity of genome assemblies, the

guiding design principle behind Hawkeye is to sim-

plify through visualization so that assembly problems

are made obvious.

Hawkeye presents all aspects of a genome assem-

bly to users through interactive displays. This begins

with the initial assembly ‘Launch Pad’, which sum-

marizes contig sizes and overall assembly contiguity.

From here, users may explore the assembly at either

the scaffold or contig level. At the scaffold level the

emphasis is on large-scale assembly quality, especially

depth of coverage, repeat content and read pairing

constraints. Unusually high or low coverage can

often indicate a repeat copy number error, while

mis-paired reads can be further evidence of copy

number problems or indicate other structural

errors. Paired reads that are in an unexpected orien-

tation or separation are flagged by the display (either

via color or placement) to draw the users eye to

groups of violating reads. Groups of pairs that trend

either too short or two long are automatically flagged

using the CE statistic, which compares the distribu-

tion of insert sizes spanning a given position in the

assembly to the global library distribution [24].

At the contig level, a detailed read tiling is dis-

played, and the focus is shifted to single base-call

correctness. The strength of this display is the

identification of low quality sequence, trimming

problems and correlated based-call errors. A single

disagreeing base is almost always the result of an

instrument-based sequencing error, but when mul-

tiple reads support an alternate variant it can signal a

non-random error, such as a heterozygous base, or

more significantly a collapsed repeat or the merging

of distinct sequences from a non-clonal sample (e.g.

polyploidy, metagenomic).

The key functionality of Hawkeye lies not in

one specific component, but rather in its ability to

display multiple aspects of the data simultaneously.

A mis-assembly often manifests as multiple anomalies

in the data. For example, a collapsed repeat is one of

the most common mis-assemblies. Figure 2 shows

the multiple lines of evidence that can be investi-

gated to identify this common problem. Among

the typical indications are increased depth of cover-

age, paired-end compressions, correlated base vari-

ants and chimeric read alignments at the boundaries.

All Hawkeye displays are dynamically synchronized,

so that the location displayed in the current contig

view is highlighted correspondingly in the scaffold

view.

Visualizations are essential for understanding indi-

vidual mis-assemblies, but for large assemblies it is

not feasible to inspect the entire reconstruction

manually. In order to direct users attention to the

most likely regions of mis-assembly, the AMOS

package includes an automated assembly forensics

pipeline, AMOSvalidate. This tool identifies anom-

alous ‘features’ of an assembly that contradict the

constraints of the input sequence data. A perfect as-

sembler would make no such mistakes, but since

computational complexity forces heuristic

approaches, subtle mistakes are commonly made.

Five important aspects of assembly quality considered

by AMOSvalidate are based on the constraints

that (i) the sequences of overlapping reads must

agree, (ii) the distance between paired reads must

be consistent with their size-selected parent frag-

ments, (iii) paired reads must be oriented in their

expected manner, (iv) read placement throughout

the assembly must be consistent with the ran-

dom shearing process and (v) all reads provided to

the assembler must be consistent with the resulting

assembly. Individual violation of these constraints

is often due to random laboratory error, but mul-

tiple violations at the same location are deemed

mis-assembly signatures. Both the individual mis-

assembly features, and the more serious mis-assembly
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signatures, can be loaded into Hawkeye to prioritize

the most likely regions of mis-assembly for manual

inspection (Figures 3–5).

The above methods detail the validation of a

single assembly, but these techniques can also be

very effective at comparing the performance of mul-

tiple assemblers. The recently introduced FRCurve

is a novel assembly metric developed at NYU and

contributed to AMOS to overcome many of the

challenges of comparing multiple assemblies [18].

By visually displaying the frequency of mis-assembly

features identified by AMOSvalidate, the FRCurve

is able to evaluate and compare multiple assemblies

in greater detail than typical contiguity metrics, like

N50. Inspired by the receiver operating characteristic

(ROC) curve, the FRCurve captures the trade-off

between contiguity (genome coverage) and quality

(number of features/errors) of the assembled contigs.

The FRCurve is one of very few self-contained as-

sembly metrics that captures both contiguity and

quality. Using AMOSvalidate, each contig is assigned

a number of features that correspond to constraint

violations in the reconstruction. Given such a set of

features, the FRCurve analyzes the response (quality)

of the assembler output as a function of the max-

imum number of possible errors (features) in the

contigs. Specifically, all contigs are sorted by size

and, from longest to shortest, and their features are

tallied until this sum exceeds a chosen feature thresh-

old. For this set of contigs, the corresponding

genome coverage is computed, leading to a single

point of the FRCurve (Figure 6). Multiple assemblies

Figure 2: Assembly artifacts resulting from a tandem repeat collapse style mis-assembly. In this small illustration,
the motif {CCCCAAAA} repeats in tandem in the original genome sequence. No single read spans the repetitive
sequence and so the assembler has created a minimal reconstruction from two overlapping reads. This results in
three signatures of mis-assembly: increased coverage, compressed pairs and partial read mappings. Increased cover-
age is caused by short reads internal to a repeat copy ‘piling up’ within the remaining copies. This can be observed
both in the read tiling, or with the K* k-mer statistic introduced by AMOSvalidate.Compressed pairs (black) are an-
chored in neighboring unique sequence and are compressed relative to their expected separation (dotted). Finally,
reads discarded by the assembler for apparent chimerism can sometimes be remapped to the assembly to identify
the exact boundary of the collapsed repeat. The tails of these reads will fail to align, or will wrap around to the
other side of the repeat.
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can then be visually and intuitively compared by

inspecting the relative position of each assembly’s

curve drawn in the same plot.

Recent innovations: analysis of second
and third generation sequences
A recent effort spanning all aspects of AMOS has

been to improve support for second generation and

now third generation sequencing. In particular,

second generation sequencing projects generally use

much higher coverage and much shorter reads. For

instance, 30–100� coverage of 50- to 100-bp reads

for second-generation sequencing is commonly used

compared to 8–10� of 500- to 1000-bp reads for

first generation Sanger sequencing. Consequently,

the total volume of sequence data used for an assem-

bly of a given genome has grown dramatically, as has

the shear number of reads in second-generation

sequencing project compared to first generation

sequencing project. This dramatic rise has

necessitated optimizations of the AMOS data struc-

tures to minimize per-read overhead and provide

better indexing to rapidly query for particular reads

given a larger collection.

AMOS also includes new conversion utilities to

support the new formats used with short reads,

such as importing/exporting reads from/to fastq

format, and importing/exporting contigs from/to

SAM format, etc. Furthermore, the parameters and

thresholds used within the assembly pipelines have

been revised to accommodate much deeper cover-

age, short reads and a different error model. The

AMOS components are currently under reevaluation

again to optimize support for third generation

sequencing, including long high error reads.

Because of its versatility, AMOS is well suited for

these emerging technologies, and the new hybrid

assembler AHA developed by Pacific Biosciences is

largely based upon the AMOS package (http://

www.pacbiodevnet.com/).

Figure 3: The Hawkeye LaunchPad displays the overall summary of the assembly using an interactive barchart of
the scaffold (top) and contig (bottom) sizes and quality. The left panel displays common statistics such as counts
and sizes of those sequences. Additional tabs display statistics and histograms for the features, libraries, scaffolds,
contigs and reads.
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Hawkeye has also been substantially improved

since its publication in 2007 in light of these chal-

lenges. As an AMOS component, Hawkeye imme-

diately benefits from the general improvements to

the AMOS infrastructure, such as reducing the

per-read overhead and memory requirements. The

visual display of Hawkeye has also been substantially

revised and rewritten to leverage the most

up-to-date version of the graphics library Qt used

for drawing menus, windows, buttons and the as-

sembly displays. In addition to generally simplifying

installation and polishing the overall display, updat-

ing to Qt 4 has also made Hawkeye more responsive,

more stable, and expanded operating system support

to fully support Mac OS X. Finally, several of the

views have been enhanced to better display deeper

Figure 4: The Hawkeye Scaffold View displays the placement of individual reads and mates within the contigs
(D^H), along with coverage statistics (A), mate statistics (B) and other features (C).
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Figure 5: The Hawkeye Contig View (top) displays the individual bases in the assembly.Once the font size becomes
smaller than would be visible (bottom), Hawkeye switches to an abstract view using colored rectangles to indicate
bases that disagree with the consensus.
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coverage of short reads. For example, the Contig

View now displays multiple reads on the same hori-

zontal row to make better use of the screen dimen-

sions for short reads.

TECHNOLOGIESAND FEATURES
Visual assembly analytics with Hawkeye
The initial Hawkeye display is called the Assembly

LaunchPad, and provides an overview to the assem-

bly results and the data characteristics. As an example,

Figure 3 shows the Hawkeye LaunchPad for an as-

sembly of the 2.9-Mb Staphylococcus aureus genome

available on the AMOS website (http://source-

forge.net/projects/amos/files/sample_data/). The

genome was assembled using the pre-assembly

error correction program Quake [25] and the

Celera Assembler [3] from �25� coverage of

100-bp reads sequenced at the Broad Institute

using an Illumina Genome Analyzer II (SRA study

SRP001086). These mated reads were sequenced

using a combination of �20� coverage of a

165-bp fragment library, and �5� coverage of a

3.5-kb jumping library.

The left side of the LaunchPad is a table showing

common summary statistics such as the number of

contigs and scaffolds, and the N50 and total sizes.

The middle panel is an interactive barchart of the

scaffolds and contigs. Each scaffold (top) or contig

(bottom) in the assembly is represented by a bar

whose size is proportional to the size of the sequence.

The height of each bar is an absolute size measured

in base-pairs, and the width is the relative fraction of

the genome size. The color of each bar is determined

by the number of mis-assembly features discovered

by AMOSvalidate. Red bars indicate the sequence

has a high number of features, and are likely to be

mis-assembled, while green bars indicate few or no

features found. On the right are buttons to select

particular contigs and display the scaffold and

contig views described below. Contigs and scaffolds

of interest can also be selected by double-clicking on

a bar in the barchart.

Other tabs of the LaunchPad display summaries

and enable queries of the features, libraries, scaffolds,

contigs and reads in the assembly. These more de-

tailed panels allow users to list particular assembly

features, compute insert size histograms, examine se-

quence GC content distributions, and a variety of

other high-level quality checks and summaries. Of

particular relevance is the feature browser, which

allows users to systematically explore every

mis-assembly feature discovered in the genome.

The next most detailed display is the Scaffold

View (Figure 4), which shows an interactive display

of the placement of the reads within the contigs and

scaffolds. At the top of the display is a line plot (A) of

the read (green) and fragment (purple) coverage for a

�7-kb region of the assembly, showing a peak near

17 kb in the contig. The next track (B) is a line plot

of the CE-statistic computed along the scaffold. Here

the blue curve represents the fragment library and

remains near zero indicating no significant compres-

sion or expansion, while the yellow curve represents

the jumping library dips strongly negative indicating

a potential compression. Track C shows the place-

ment of the contig in the scaffold, a color gradient of

the insert coverage (purple), read coverage (green)

and the mis-assembly features. The orange bar indi-

cates AMOSvalidate found a ‘suspicious region’

(orange) as indicated by a CE-statistic compression

(light blue), along with the high read coverage

(bright blue), and an unusually high density of het-

erogeneous SNPs (red). Tracks D–H show the place-

ment of the individual reads, as thick rectangles

connected by thin lines to connect mated reads.

The green inserts (D) are separated and oriented as

expected, while blue (E) are further than expected,

yellow (F) are closer than expected, red (G) are

mis-oriented, and purple (H) are reads that have

mates, but those mates are not in the contig at the

expected location. The bottom panel (I) gives an

overview of the entire scaffold, showing this is the

only predicted mis-assembly location in the scaffold.

Figure 6: Feature-Response Curve comparison using
the mate-pair feature type for Escherichia coli. The data
set consists of 20.8 million paired-end 36-bp Illumina
reads from a 200-bp insert E. coli strain K12 MG1655.
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The right panel contains several filters and search

boxes (J–K). These controls allow users to selectively

display different classes of inserts, or to search for

specific reads or features. All of the elements in the

scaffold view are interactive, and clicking on a read

or feature displays the details for that item in the

details panel (K).

The final Hawkeye display is the Contig view

(Figure 5). When this view is first displayed, the se-

quences of the individual reads are displayed (top).

However, as users decrease the font size, Hawkeye

uses semantic zooming to switch to an abstract dis-

play of the reads and uses colored rectangles to high-

light where the read bases disagree with the

consensus. This display is synchronized with the

Scaffold view and shows a high density of SNPs pre-

sent in this region of the genome, including 9 bases

with multiple reads that agree with each other but

disagree with the consensus. Clicking on the consen-

sus sorts the reads by the bases at that position and is

very effective as an on-the-fly clustering of the reads.

Users can also optionally display other read details

such as color-coded quality values or trimmed

bases, or search for particular sequence motifs or

read names.

Hawkeye integrates all available evidence to high-

light the mis-assembly presented above: the read

coverage is abnormally high; clusters of jumping

mates are compressed, mis-oriented and absent; and

finally the individual reads disagree with each other.

In this case we can confirm the assembly by aligning

the contigs to the reference genome, and indeed the

predicted mis-assembly is confirmed. However, a

user can draw this same conclusion without a refer-

ence given the abundance of evidence presented by

Hawkeye. After identifying this mis-assembly, the

user may wish to adjust assembly parameters, or use

the assembly correction tools available within

AMOS to fix the region.

Multiple assembly comparisonwith the
FRCurve
Complementary to the single assembly analysis cap-

abilities of Hawkeye, the FRCurve excels at visua-

lizing and comparing the overall quality of multiple

alternate assemblies of the same data. These assem-

blies may be created using different assemblers,

or even using the same assembler with different par-

ameters. For example, a critical parameter of

many short read assemblers is the k-mer word size

used for constructing the de Bruijn graph, and it is

now a common practice to systematically perform

multiple assemblies using multiple k-mer sizes. The

simplest way to evaluate multiple assemblies, and

select the best, is to compare the sizes of the contigs

and the scaffolds, such as by comparing the max-

imum size or the N50 size. However, this can be a

poor metric, as it does not measure the accuracy of

the sequences.

The FRCurve fills this void by simultaneously

measuring the connectivity and the quality of mul-

tiple assemblies at once, using the mis-assembly fea-

tures identified by AMOSvalidate to measure quality

in the absence of a reference sequence. The visual-

izations generated by the FRCurve are highly intui-

tive: faster growing curves correspond to better

assemblies since a larger fraction of a genome can

be covered with contigs containing fewer features/

errors. For example, Figures 6 and 7 show two ex-

amples where the FRCurve is used to compare the

assembly quality of some well-known assemblers

both for short next-generation Illumina data and

long Sanger data respectively (part of these results

have been previously published [18]). In the top

figure one can immediately see that with this short

read data set and for the parameters used, ABySS [26]

produced the best assembly overall followed

by SUTTA [27], SOAPdenovo [28] and Velvet.

In the second figure, one can similarly see with this

long read data set, CABOG [3] produced the

best assembly overall, followed by SUTTA [27],

the TIGR Assembler [29], Arachne [30, 31] and

PCAP [32].

Figure 7: Feature-Response Curve comparison using
the mate-pair feature type for Staphylococcus epidermi-
dis. The data set consists of 60761 paired-end Sanger
reads of 900bp average length for a total coverage of
�20�.
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DISCUSSIONAND FUTURE
DIRECTIONS
The recent dramatic decreases in sequencing costs

have driven a corresponding increase in the

number and types of genomes sequenced. Many

sequencing projects, such as the 1000 Genomes pro-

jects or the Cancer Genome Atlas, are resequencing

many human genomes to identify common genetic

variations or variations associated with various dis-

eases. However, there are also a considerable

number of projects underway for which no reference

genome is available and de novo assembly is the only

option available. Notably, the Genome 10 K project

(http://www.genome10k.org/) aims to sequence

10 000 vertebrate genomes, the i5K initiative

(http://arthropodgenomes.org/wiki/i5K) aims to se-

quence 5000 insects and other arthropods, and the

Human Microbiome Project (https://commonfund.

nih.gov/hmp/) aims to assemble and characterize the

thousands of microbial species that live on and

within the human body. Assembling these genomes

will require substantial computational effort and

easy-to-use software packages for assessing their

quality. Hawkeye coupled with our assembly foren-

sics and FRCurve pipelines provides exactly these

features.

Interactive and visual analytics tools for these ana-

lyses provide many advantages, especially the ability

to zoom and filter from high-level overviews down

to individual bases. Furthermore, semantic zooming

progressively provides more details of the assembly

until all relevant details are displayed to allow inspec-

tion and interpretation that cannot be captured by a

single metric. This enables users to literally see un-

usual or interesting events without necessarily know-

ing exactly what they are looking for. For example,

users that see an unusual pileup of reads with the

exact same coordinates will realize that they need

to filter PCR duplicates. In addition to detecting

errors, the absence of mis-assembly features can lend

credence to important regions of the genome under

study. This level of intuitive analysis will hopefully

advance genome assembly from being a specialized

task that only a few experts can understand to some-

thing that is accessible to anyone.

Future work remains to enhance Hawkeye and all

of AMOS to support emerging data types and assays.

Already AMOS forms the basis for the new hybrid

second and third generation assembler created by

Pacific Biosciences, and the AMOS data structures

support the concept of multiple subreads sampled

from a parent fragment, such as ‘strobed’ reads.

However, fully supporting them will require gener-

alizing our storage methods to support more than

two subreads, and reengineering of the components

that analyze paired-end data. Similar enhancements

are needed to, for example, represent transcript

assemblies derived from RNA-seq reads overlaid

with the reference genome, or develop on-the-fly

quantification of binding sites from ChIP-seq reads.

Improved support for even larger datasets and even

larger genomes continues as well, with plans in place

for more compact representations of individual reads

and better indexes of the assembly so that less data

needs to be stored in memory without sacrificing

performance. Finally, we aim to provide more ana-

lysis and statistical functionality into the visual dis-

plays so that users can cluster or filter in ad-hoc ways

in support of emerging assays in which no established

analysis methods exists.

Key Points

� Commonly used assembly metrics such the N50 size do not ad-
dress the quality of an assembly, especially when assessing if a
particular gene or chromosome has been assembled correctly.

� Many mis-assemblies can be identified by assembly forensics,
which statistically and systematically evaluates the consistency
of the reads and paired-end constraints.

� Visual analytics is well suited for assessing assembly quality by
empowering users to interactively examine the evidence across
resolutions, and for identifying trends before formal analysis
pipeline are created.
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