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Abstract
Protein^protein interaction is of primary importance to understand protein functions. In recent years, the high-
throughput AP-MS experiments have generated a large amount of bait^prey data, posing great challenges on the
computational analysis of such data for inferring true interactions and protein complexes. To date, many research
efforts have been devoted to developing novel computational methods to analyze these AP-MS data sets. In this
article, we review and classify the key computational methods developed for the inference of protein^protein
interactions and the detection of protein complexes from the AP-MS experiments. We hope that our review as
well as the challenges highlighted in the article will provide valuable insights into driving future research for further
advancing the state-of-the-art technologies in computational prediction, characterization and analysis of protein^
protein interactions and protein complexes from the AP-MS data.

Keywords: AP-MS data; protein^protein interactions; protein complexes; validation

INTRODUCTION
Protein–protein interactions (PPIs) play an important

role in the biological process and metabolic functions

in the cell [1, 2]. Recently, high-throughput experi-

mental techniques such as Affinity Purification/Mass

Spectrometry (AP-MS) have generated large data sets

of experimentally detected protein–protein inter-

actions. In the AP-MS experiments, a tagged bait

protein is used to capture the prey proteins in a puri-

fication, where the preys are candidate interacting

partners of the bait. Figure 1 gives an illustration of

the entire experimental process, and Table 1 lists

some online AP-MS data resources that have been

used in the methods reviewed in this article. The

resulting AP-MS data can be either qualitative or

quantitative. The quantitative protein abundance

can be estimated from different types of information

generated in MS experiments such as the peptide

count, the spectral count and the sequence coverage

[8–11]. From such AP-MS data, protein–protein

interactions can be inferred, and then protein com-

plexes are detected.

However, there are still several challenges to over-

come for accurately detecting protein interactions

and complexes from the AP-MS data. First, a

single bait protein may be involved in more than

one complex and therefore it can capture a set of

prey proteins which actually never occur in the
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same complex. Second, it is well known that the real

purification data sets are noisy and contain many

false-positive interactions [12]. Third, in the pro-

cesses of peptide identification and protein inference,

new errors may be introduced.

Thus, effective computational methods for

network inference from AP-MS data must be de-

veloped. To illustrate the characteristics and unique-

ness of the AP-MS data, here we discuss several

related network inference problems from different

application domains, which are most similar to the

AP-MS data analysis problem reviewed in this

article.

� Diffusion network inference [13]. There is an

unknown network over which contagions propa-

gate. The objective is to recover the true network

from a collection of observed cascades, where each

cascade is created by the diffusion of a particular

contagion. This problem is very similar to the net-

work inference problem from AP-MS data in that

we can regard each ‘purification’ as a ‘cascade’,

Figure 1: The entire workflow of an AP-MS experiment. Firstly, the bait proteins are used to capture the sets of
prey proteins.Then, all proteins are digested into peptides, and these peptides are forwarded into a mass spectrom-
eter.Thirdly, peptides are identified from the tandemmass spectra and thereafter proteins are inferred from identi-
fied peptides. Finally, we obtain a list of bait^prey pairs, which may contain many false-positive interactions.

Table 1: Some AP-MS data available online

Name URL

Saccharomyces cerevisiae [3] http://kroganlab.ucsf.edu/links.html
TIP49, DUB and CDC23 [4] http://www.nature.com/nmeth/journal/v8/n1/abs/nmeth.1541.html
HEK293 and Jurkat [5] http://www.nature.com/nature/journal/v481/n7381/abs/nature10719.html
CDC23 [6] http://pubs.acs.org/doi/suppl/10.1021/pr201185r
Human Deubiquitinating Enzyme [7] http://www.sciencedirect.com/science/article/pii/S0092867409005030

Network inference from AP-MS data 659
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/16/4/658/352407 by guest on 19 April 2024

http://kroganlab.ucsf.edu/links.html
http://www.nature.com/nmeth/journal/v8/n1/abs/nmeth.1541.html
http://www.nature.com/nature/journal/v481/n7381/abs/nature10719.html
http://pubs.acs.org/doi/suppl/10.1021/pr201185r
http://www.sciencedirect.com/science/article/pii/S0092867409005030


where identified proteins in each purification cor-

respond to the infected nodes in the cascade.

However, the problem of network inference

from AP-MS data is more difficult because pro-

teins in each purification are unordered. In con-

trast, the infected nodes in each cascade are

ordered by their infection time. In other words,

the collections of cascades contain more informa-

tion than the set of purifications, making it unfeas-

ible to directly apply models and algorithms in

diffusion network inference to solving the net-

work inference problem from AP-MS data.

� Network inference from co-occurrences [14]. The

problem is to infer the network structure from a

set of observations, where each observation con-

sists of a set of related entries/nodes that carry the

information transmission together. The observa-

tions only reflect which subsets of nodes are

involved, but do not indicate the order in which

they handle the transmission. Despite of the seem-

ing similarity between the co-occurrence data and

purification data, there are at least two key differ-

ences. Firstly, the inference objective in [14] is to

establish a directed graph where each observation

corresponds to an ordered path through the net-

work. This is clearly different from the target net-

work desired in AP-MS data analysis. In addition,

proteins in a purification are not equally import-

ant, i.e. the bait protein pulls down other prey

proteins. If we model each purification as an ob-

servation in the co-occurrence data, such valuable

information is lost.

� Network inference from perturbation data.

Perturbation experiments in system biology gen-

erate large amounts of data. Numerous algorithms

have been proposed to analyze these perturbation

data sets in order to reveal the true underlying

network structures (e.g. [15, 16]). In our opinion,

the ‘pull-down’ AP-MS data can be regarded as a

special kind of perturbation data. However, the

AP-MS data are distinct from other types of per-

turbation data in several perspectives. Firstly, the

noise rate of the AP-MS data is very high, where

the true interaction partners of the bait are often

<10% of all identified preys in a single purification

[17]. Secondly, the perturbation data sets for other

network inference problems (e.g. signal transduc-

tion network) usually contain some extra informa-

tion that can facilitate the inference. Finally, the

aim of analyzing the AP-MS data is to build an

undirected PPI network, while the algorithms

such as those methods for inferring signal trans-

duction networks focus on establishing a directed

network.

The above analysis shows that the problem of net-

work inference from the AP-MS data is distinct from

the existing network inference problems in different

domains. As a result, there have been many research

efforts on developing novel computational methods

to analyze such AP-MS data. However, the problem

of inferring true interactions and protein complexes

from the high-throughput AP-MS data is far from

being resolved.

Generally, there are four main computational

issues in the analysis of AP-MS data:

� Predicting co-complex interactions between
two proteins. Generally, PPIs can be divided

into two major types: physical interactions and

co-complex interactions. Co-complex interactions

are those which take place at such distances that

the average properties of the protein or its surface

may be used in calculating interaction energies

[18]. The co-complex interaction means that the

interacting protein pair does not need to have a

direct physical contact, but interacts in the forma-

tion of a complex. In other words, co-complex

interactions indicate the relationships among the

members of the protein complexes: two proteins

in the same complex share one co-complex inter-

action. Because raw AP-MS data sets contain

many false-positive interactions, it is obliged to

reduce the number of false positives. Co-complex

interactions provide the co-membership informa-

tion in a complex such that predicting co-complex

interactions can be used as the pre-processing step

for some protein complex detection methods.

Meanwhile, it is also feasible to use the predicted

co-complex interactions as the input for further

inferring physical interactions. Therefore, in this

article, we put the problem of predicting co-com-

plex interactions as a research issue alone.

� Inferring physical interactions between two
proteins. Physical interactions are those in

which the interacting molecules approach closely

and thus bring into play local forces [18]. Unlike

co-complex interactions, one physical interaction

represents a direct biophysical interaction between

two proteins, that is, they are linked by an edge in

the protein–protein interaction network. Thus, to

construct the real PPI network, it is vital to infer
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the physical interactions. Generally, it is recog-

nized that yeast two-hybrid (Y2H) method [19]

detects direct binary interactions while the AP-MS

experiment captures co-complex associations.

Therefore, it is a challenging issue to infer physical

interactions from the AP-MS data.

� Detecting protein complexes. Protein does not

act individually, but works as a member of a

module to carry out its functions. There are two

types of cellular modules [20]: protein complexes

and functional modules. A protein complex is a

group of proteins that interact with each other at

the same location and time, while proteins in a

functional module do not necessarily interact

with each other at the same time and location.

As discussed in [21], here we also do not distin-

guish these two concepts and use the term of pro-

tein complex to refer to both of them in this

article. Because protein complexes are the key

molecular entities to perform many essential bio-

logical functions, detecting protein complexes is

another important goal in the analysis of the AP-

MS data. Complex detection methods can use two

types of inputs: the raw AP-MS data and the PPI

network obtained through pre-processing the raw

AP-MS data, as shown in Figure 2.

� Assessing the results. Validating the inference re-

sults is as important as developing new inference

methods. The validation techniques are essential

to develop new algorithms and verify the infer-

ence results.

These four issues penetrate the whole process of

analyzing the AP-MS data, as described in Figure 2.

Several recent reviews have focused on some

computational issues and methods listed above in

detail [22–26]. However, there are still no available

reviews that cover all these subjects from an algorith-

mic perspective. Here, we try to bridge this gap by

reviewing major computational methods for analyz-

ing the AP-MS data in a breadth-first manner. Our

main objective is to highlight the data analysis chal-

lenges and typical computational strategies for each

problem with a special focus on the algorithmic

nature of underlying problem. To this end, we will

not cover all methods in each category. Instead, we

discuss the basic principle first and then just list some

typical methods for illustration. In the rest of this

article, we will briefly describe the computational

problems and concisely discuss recent developments

in different categories.

PREDICTING CO-COMPLEX
INTERACTIONS
Since proteins recovered in a given purification

rarely correspond to a single complex, but to a mix-

ture of multiple complexes, which leads to the fact

that the AP-MS data cannot be converted into co-

complex interactions in a straightforward manner.

Therefore, computational methods should be used

to remove false-positive interactions and measure

the confidence that a pair of proteins belongs to

the same complex. As shown in Figure 2, there are

two popular models for fitting the AP-MS data: the

spoke model and the matrix model [27]. In the spoke

model, the bait proteins act as hub nodes and the

prey proteins are connected with the baits. In the ma-

trix model, all the proteins that occur in the same

purification experiment, either bait–prey or prey–

prey pairs, are recognized as connected with each

other. Until now, many methods have been pro-

posed to score the reliability of a co-complex inter-

action between a pair of proteins that occur in the

same purification experiment under these two

models. In Figure 3, we provide a categorization

on co-complex prediction algorithms and list some

representative methods as well. Now, we briefly de-

scribe some typical scoring methods for predicting

co-complex interactions.

Before we present the algorithms, we define

some notations that are used in this section. Let

E ¼ fe1; e2; :::; eng be an AP-MS data set of n puri-

fications. For a pair of proteins, i and j, let ni!j be the

number of times j is observed among preys in puri-

fications performed with i as the bait and mi;j be the

number of times i and j are observed as preys in

purifications performed with a third protein as a

bait. Some scoring schemes combine these terms

into one number oi;j ¼ ni!j þ nj!i þ mi;j.

The methods for predicting co-complex inter-

actions without using quantitative information can

be further classified into two categories according

to their scoring strategies. The scoring methods in

the first class treat bait–prey pairs and prey–prey pairs

separately. The socio-affinity (SA) [12] scoring

method is one representative scoring method that

adopts this strategy, whose interaction score can be

written as a sum of direct bait–prey components (S)

and an indirect prey–prey component (M). Thus, for

a potential interaction between proteins i and j, the

SA score reads as:

SAi;j ¼ Si!j þ Sj!i þMi;j: ð1Þ
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Here, both Si!j and Mi;j use the log-ratios of actual

co-occurrences relative to what would be expected

based upon protein purification frequencies. That is,

Si!j ¼ log
ni!j

f baiti nf preyj npreybait¼i

; ð2Þ

Mi;j ¼ log
mi;j

f preyi f preyj

X
allbaits

npreyðnprey � 1Þ=2
; ð3Þ

where f baiti is the percentage of purifications where

protein i is bait, f preyj is the percentage of all captured

preys that are protein j and npreybait¼i is the number of

preys obtained with protein i as the bait. For the

matrix model term (M), nprey is the number of

times that proteins i and j are observed in purifica-

tions with baits other than i or j.
Similar to the socio-affinity scores, the purification

enrichment (PE) [3] scoring scheme also uses

log-ratios of the actual co-occurrences relative to

the expected ones based upon protein purification

frequencies. The difference is that the PE method

uses a more sophisticated statistical model to score

each pair of proteins.

Another class of scoring methods without using

quantitative abundance treat bait–prey pairs and

prey–prey pairs equally in the process of interaction

assessment. Here we use the IDBOS algorithm [28]

and a correlation-based method [29] as examples for

illustration.

IDBOS is a scoring method that exploits con-

strained randomized simulations. This method com-

pares observed co-occurrences of protein pairs with

those from random simulations where the latter

are realized by shuffling prey proteins randomly.

For each unique protein pair i and j, the total

number of times they co-occur in the same purifica-

tion, oi;j, is first counted. Their average shuffled

Figure 2: The brief process of dealing with AP-MS data.The spoke model andmatrix model are widely used for in-
terpreting the AP-MS data. Based on these two models, we can evaluate the interaction strength between two pro-
teins with interaction prediction algorithms.With a given threshold, interactions with low scores are removed and
interactions with high scores are used to construct the PPI network. Complex detection methods can use two
types of inputs: (i) the raw AP-MS data and (ii) the PPI network obtained from the raw AP-MS data. Both the pre-
dicted interactions and detected complexes are assessed with some validation methods. There are two commonly
used validation methods: the database-based approach and the reference-free approach.
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co-occurrence, ôi;j, and associated standard devi-

ation, di;j, are then obtained from the randomized

purification sets. The CS score for this protein pair, i
and j, is computed as:

CSi;j ¼
oi;j � ôi;j

di;j
: ð4Þ

Figure 4 describes the workflow for computing the

CS score.

In [29], the authors use the Dice coefficient (DC)

to measure the correlation between two proteins. For

two proteins, i and j, the Dice coefficient is defined as:

DCi;j ¼
2oi;j

2oi;j þ r þ s
; ð5Þ

where r denotes the times that only protein i occurs,

but protein j does not occur. Likewise, s denotes the

times that only protein j occurs, but protein i does not

occur.

Protein abundance information is helpful to dis-

tinguish true interactions from false positives.

Therefore, many effective scoring methods have

been developed to predict co-complex interactions

from quantitative AP-MS data. These methods adopt

either the spoke model or the matrix model in their

scoring schemes. We describe some representative

methods of each type as follows.

The Significance Analysis of Interactome (SAINT)

method [4] uses spectral counts to facilitate the

detection of bait–prey interactions. It employs a

mixture of Poisson distributions to compute the pos-

terior probability of a true interaction between a

bait–prey pair.

The mass spectrometry interaction statistics (MiST)

method [5] is designed for identifying AP-MS-derived

host–pathogen interactions. MiST uses three measures

in its scoring function: abundance (protein abundance

measured by peak intensities), reproducibility (the in-

variability of abundance over replicated experiments)

and specificity (the uniqueness of an observed inter-

action across all purifications). These three measures

are combined into a single composite score, the

Figure 3: The categorization of co-complex interaction prediction methods. The co-complex interaction predic-
tion methods can be divided into two categories based on whether using the quantitative information as the
input.The methods in the first category that ignore the protein abundance information use two different strategies
to score the candidate protein pairs. The first strategy evaluates the bait^prey and prey^prey interactions in a dif-
ferent manner and the methods in the second category treats all candidate protein pairs uniformly. On the other
hand, the methods that incorporate quantitative protein abundance use either the spoke model or the matrix
model for interaction prediction.
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MiST score, by maximizing the variance using the

standard principal component analysis.

CompPASS [6] assigns scores to interactions based

on the quantitative AP-MS matrix, where the col-

umns are individual purifications, the rows are prey

proteins, and each element is populated with the cor-

responding total spectral counts (TSC). This method

employs two scoring metrics: the conventional Z

score and the D score, as described in Figure 5. As

the Z score equally weights unique preys regardless of

their TSC, the D score is proposed to address this

drawback. The D score incorporates the uniqueness,

the prey abundance and the reproducibility of the

interaction to assign a score to each bait–prey pair.

Different from the methods introduced above

which only consider bait–prey pairs, the HGSCore

method [30] is based on the matrix model that treats

bait–prey and prey–prey interactions equally. This

method uses the transformed and normalized TSC

to measure the protein abundance, which is denoted

by TN. Because the determination of specificity of

interaction between each pair of proteins hinges on

the smaller one of the two TN values, the HGSCore

calculates the hypergeometric probability of observing

an interaction between protein i and protein j as:

Phygeo;i;j ¼ P
X

minðTNÞ > kjw; q;T
� �

¼
Xminðw;qÞ

x¼k

Phygeoðxjw; q;TÞ ¼
Xminðw;qÞ

x¼k

ð
w
x Þð

T�w
q�x Þ

ð
T
q Þ

;

ð6Þ

where

k ¼
P

minðTNÞ for purifications with TN;i > 0 and

TN;j > 0,

w ¼
P

minðTNÞ for purifications with TN;i > 0,

q ¼
P

minðTNÞ for purifications with TN;j > 0,

T ¼
P

minðTNÞ for all purifications.

The final interaction score between protein i and

protein j is calculated as:

HGSCorei;j ¼ �logðPhygeo;i;jÞ: ð7Þ

Tucker et al. [31] propose a sampling-based ap-

proach for scoring interactions, as described in

Figure 6. This method first converts the spectral

count into the probability that the observed inter-

action is true. Then, a specified number of random

qualitative data sets are created by sampling bait–prey

interactions according to their probabilities. Finally,

each randomized data set is used as the input to an

interaction prediction method of choice that oper-

ates on binary data, and the results from different

binary matrices are aggregated to produce an ensem-

ble score.

Although some recent breakthroughs have been

achieved for predicting co-complex interactions,

there are still certain drawbacks in the existing meth-

ods, as shown in Table 2. The methods such as

SA, PE, IDBOS and DC, rely on a large-scale data

set for statistical validity. These methods can effect-

ively identify candidate interacting proteins from

Figure 4: The workflow of the IDBOSmethod.This method first generatesmany random data sets by shuffling the
original AP-MS data and then compares observed co-occurrences with those from random simulations. For example,
in the original data, the number of co-occurrence of the protein pair A and B, oA;B is 1. While in the first shuffled
set, the prey B and the prey E are exchanged. Then the number of co-occurrence of protein A and B, o1A;B becomes
0. By calculating the average shuffled co-occurrence, ôA;B, and associated standard deviation, dA;B, the final CS
score of protein pair A and B can be obtained.
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large-scale data sets but may not be appropriate with

small-scale data sets or when baits do not share

common preys. Additionally, they do not fully util-

ize the quantitative protein abundance. SAINT,

MiST, CompPASS and HGSCore, are designed for

the AP-MS data sets with quantitative information,

and these methods can perform better when the

quantitative information is sufficient and accurate.

Figure 5: The CompPASS method. In the quantitative AP-MS matrix, the columns are individual purifications, the
rows are prey proteins, and each element is populated with the corresponding total spectral counts, as shown in
the upper part. Based on the quantitative AP-MS matrix,CompPASS employs two scoring metrics: the conventional
Z score and the D score. The Z score is calculated with Equations 1, where Xj and dj denote the average and
the standard deviation of total spectral counts for prey j, respectively. The D score is calculated according to
Equation 2, where k is the total number of purifications in the AP-MS matrix.

Figure 6: The process of the sampling method with quantitative information.The method first converts the spec-
tral count into a probability that measures the interaction strength between a bait^prey pair. Then, it generates a
specified number of binary data sets by sampling bait^prey interactions according to their probabilities. Thereafter,
existing scoringmethods that operate on binary data are employed to infer interactions from these binary matrices.
Finally, the results from different binary data sets are aggregated to produce the final scores.
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The CompPASS method can perform very well for

data sets having a large number of unrelated baits but

will filter out some true interactions with higher de-

tection frequency when all baits belong to the same

protein pathway [32]. The SAINT method over-

penalizes true interactions that have high average

total spectral counts but are not captured in all rep-

licates [32]. On the other hand, the methods de-

veloped for special purpose such as MiST, can be

applied to the general AP-MS data sets but their

experimental performance needs to be further inves-

tigated. Therefore, the prediction of co-complex as-

sociations remains an open problem.

INFERRING PHYSICAL
INTERACTIONS
The methods reviewed in the section of Predicting co-
complex interactions mostly concentrate on two aspects:

(i) separating the true co-complex interactions from

experimental noises such as protein misidentification

[29, 33, 34] and contaminants [22, 35, 36], and (ii)

measuring the strength of a co-complex interaction

between two proteins. However, the complex asso-

ciated proteins may not interact with each other dir-

ectly in the PPI networks. And the scoring methods

for predicting co-complex interactions can assign

high scores to the pairs of proteins occurring in the

same complex, but probably they are not interacted

directly with each other. In order to construct the

real PPI networks, it is important to infer the phys-

ical interactions. Accurately separating direct inter-

actions from indirect ones can also help to detect

protein complexes from given purifications which

correspond to a mixture of multiple complexes. To

date, three computational methods have been pro-

posed, indicating that physical PPIs can also be

inferred from the AP-MS data.

The ISA algorithm [37] extends the SA scoring

method to predict physical interactions from the

AP-MS data. It adopts the null model used in the

SA to derive the ISA score as:

ISAi;j ¼ �logPrðn
null
i!j � ni!jÞ � logPrðnnullj!i � nj!iÞ;

ð8Þ

where nnulli!j denotes the times that protein j is retrieved

with protein i as the bait when the null hypothesis is

true. The results on two high-throughput yeast data

[12, 38] show that ISA is good at inferring physical

interactions from AP-MS data.

The Sets2Networks algorithm [39] is designed for

inferring networks from repeated observations of

sets, which can be applied to discovering the direct

PPIs from the AP-MS data as well. This method first

generates an ensemble of networks consistent with

the observed data. Then the presence probability of a

given link in the underlying real network condi-

tioned on the data is estimated from the occurrence

frequency of the link throughout the ensemble.

Specially, it calculates the mean adjacency matrix

over the ensemble, each element of which corres-

ponds to the probability of the edge being present in

a uniformly random draw from the ensemble. This

matrix quantifies the confidence of each direct phys-

ical PPI given solely the information on the connect-

ivity of the underlying network derived from the

experimental data.

Kim et al. [40] present a physical interaction pre-

diction method with quantitative abundance as the

input. This method models the unknown direct

interaction network as a probabilistic graph under

the following two assumptions:

� All direct interactions survive with the same

probability p, and fail independently with prob-

ability 1 � p.

Table 2: Summary of methods for predicting co-complex interactions from the AP-MS data.

Method Data model Input Advantages Disadvantages

SA [12] Spoke and matrix model Qualitative
AP-MS data

Simple and no need for
additional quantitative
information.

Relying on large-scale data set;
may not be appropriate with small-scale
data sets or when baits do not
share common preys.

PE [3]
IDBOS [28] Matrix model
DC [29]
SAINT [4] Spoke model Quantitative

AP-MS data
More accurate and can be
applied to small-scale
data sets.

Only can be applied to AP-MS data
with quantitative information.CompPASS [7]

MiST [5]
HGScore [30] Matrix model
Tucker et al. [31] Spoke and matrix model
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� All direct interactions take place with the same

frequency at the same time, irrespective of the

presence of other interactions.

In order to measure the connectivity of all pairs of

proteins in the direct PPI network Gdirect, Pdirect is used

to denote the connectivity matrix of Gdirect. For a pair

of proteins, i and j, the corresponding pdirectði; jÞ in

Pdirect means the probability that there exists at least

one path between i and j after each edge in Gdirect is

broken with probability p. Figure 7 shows an ex-

ample of a direct interaction network and its con-

nectivity matrix.

Under the above assumptions, the following for-

mula is further derived:

Ai;j / wði; jÞ � pdirectði; jÞ: ð9Þ

Here Ai;j denotes the abundance of the prey protein j
when protein i is selected as the bait and wði; jÞ denotes

the number of pairs of proteins i and j that interact

directly in the cell considered. This formula means

that the amount of protein j that will be obtained

when protein i is the bait is proportional to the prob-

ability that i and j remain connected after each edge in

Gdirect is broken with probability p. In the AP-MS ex-

periments,mdirectði; jÞ, which is an estimate of pdirectði; jÞ,
can be gained from Ai;j through appropriate normal-

ization. Therefore, the problem of inferring direct PPIs

is formulated as finding the best Pdirect such that for each

pair of proteins i and j, jmdirectði; jÞ � pdirectði; jÞj < e,

where e represents the error tolerance.

The study on the prediction of physical PPIs from

the AP-MS data is still in its infant stage. Each of the

existing three methods has its strengths and weak-

nesses. On one hand, both ISA and Sets2Networks

can be applied to the AP-MS data with or without

quantitative information while the method proposed

in [40] needs protein abundances as the input. On

the other hand, ISA is more efficient than the other

two algorithms, as Sets2Networks needs to conduct a

large-scale simulation and the algorithm in [40] has

to solve a hard optimization problem.

DETECTINGPROTEINCOMPLEXES
Protein complexes are key units to carry out meta-

bolic functions in the cell. To date, some notable

computational approaches have been proposed to

identify protein complexes from AP-MS data.

These methods can be characterized into two cate-

gories, as shown in the right part of Figure 8.

As shown in the left part of Figure 8, there are

three steps for the complex detection methods in the

first category. The first step is to assess the protein

interaction affinities with methods such as SA and

PE. The second step is to construct a protein–protein

interaction network by applying a threshold or a

cutoff value. Finally, the third step is to mine com-

plexes on the constructed PPI network. Because the

detection of protein complexes from PPI networks

has been investigated for a long time, a variety of

computational algorithms including MCODE [27],

Markov clustering [41] and DPClus [42] can be em-

ployed directly in the third step. Recently, the hier-

archical clustering algorithm is applied to detecting

protein complexes from the PPI network that is con-

structed with a newly developed co-complex inter-

action prediction algorithm [43].

Converting the raw AP-MS data into a PPI network

not only introduces errors but also loses useful infor-

mation about the underlying multi-protein

relationships that can be exploited to detect the internal

organization of protein complexes [44]. Therefore, an-

other alternative strategy is to detect complexes from

the AP-MS data directly without constructing the pro-

tein–protein interaction networks. In this strategy, the

AP-MS data set is modeled as a bipartite graph in

which the two vertex sets are composed of bait proteins

and prey proteins, respectively. The edges between the

two vertex sets represent bait-prey connections.

CACHET [45] and CODEC [46] are two examples

in the category. Both of them focus on detecting high-

quality protein-complex cores from the bipartite

graph. To minimize the effects of false-positive

Figure 7: An example of a direct interaction network
(left) and its connectivity matrix (right). In the calcula-
tion of connectivity matrix, each edge is assumed to
survive with the probability of 1/2. The connectivity
probability between two proteins can be estimated via
sampling the probabilistic network. For example,
the probability of connectivity between protein A and
protein B is calculated as 1� ð1=2 � 1=2þ 1=2 � 1=2
�1=2Þ ¼ 5=8.
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interactions, the CACHET method uses the reliability

scores such as SA, PE and DC scores to measure the

bait–prey similarity while CODEC approximates the

reliability of bait–prey links by the degree of the ver-

tices. Only non-redundant, reliable bicliques obtained

from the bipartite graph are regarded as protein-

complex cores. Then both methods construct protein

complexes by including attachment proteins into the

cores. Figure 9 gives an illustration on the key idea of

CODEC and CACHET. The difference between

CODEC and CACHET is that CODEC detects

dense bipartite subgraph by iteratively adding proteins

into seed subgraphs while CACHET selects complex

cores directly from the bipartite graph.

With the development of quantitative proteomics,

more methods that use quantitative AP-MS matrix as

the input have been proposed. In [47], the hierarch-

ical clustering algorithm is used to cluster the rows

and the columns of the AP-MS matrix independ-

ently so as to obtain a better organized matrix. On

the other hand, the nested clustering algorithm [48]

is a two-step sequential clustering (biclustering) pro-

cedure, as described in Figure 10. It first forms bait

clusters based on the similarity of prey abundance

vectors. Subsequently, the preys in each bait cluster

are grouped independently from the other bait clus-

ters. Unlike the method in [47], this method uses the

Markov Chain Monte Carlo (MCMC) algorithm to

identify biclusters by stochastically drawing samples

of bait and prey cluster configurations from a poster-

ior distribution. The biclustering configuration yield-

ing the highest posterior probability is selected as the

solution.

Similar to the nested clustering method, BI-MAP

[49] is also a Bayesian statistical model for complexes

identification. The major difference between the

nested clustering approach and the BI-MAP

method is that they have different target clusters

[49]. The nested clustering approach aims at finding

larger parts of protein complexes (sub-complexes),

whereas BI-MAP aims at identifying stable and usu-

ally smaller structures (modules) that are preserved

across all the bait clusters.

So far, there is still no method available that is

capable of clustering all kinds of AP-MS data for

detecting protein complexes. Existing complex

Figure 8: The classification of protein complex detection methods. According to the different inputs of the algo-
rithms, the methods for detecting protein complexes can be characterized into two categories. In the first category,
the methods mine the protein complexes from the PPI networks that are constructed with the interaction predic-
tion methods listed in previous sections. In the second category, the methods detect complexes from AP-MS data
directly by modeling the AP-MS data as a bipartite graph in which the two vertex sets are the set of baits and the
set of preys, respectively.
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detection algorithms have their own advantages and

shortcomings. We give a short summary of methods

for detecting the protein complexes from the AP-

MS data in Table 3. The methods with multiple

phases in the first category are very flexible since

we have many different choices in each phase.

However, some useful information will be lost

when the original AP-MS data is converted into

the binary PPI network. In contrast, there will be

no such kind of information loss for the methods in

the second category. However, both CACHET and

CODEC focus on finding clusters with high density

so that they may ignore clusters with relatively low

density. And the useful quantitative information on

protein abundance is not incorporated into these two

methods. The methods such as nested clustering and

BI-MAP can yield better results, as they fully make

use of the quantitative information. However, they

are very complicated, as there are many parameters

to be specified. In addition, it is very time-consum-

ing to obtain the detection results, as we need to

solve hard optimization problems in both methods.

Overall, no algorithms can always be the best under

all scenarios; therefore, detecting protein complexes

from the AP-MS data is still an open problem.

VALIDATINGTHERESULTS
Validating the constructed PPI networks, which is as

important as developing advanced methods for infer-

ring PPIs and detecting protein complexes, has not

received much attention. The validation techniques

are conducive not only to the development of new

algorithms but also to the verification of the results.

Based on whether using additional reference data-

base, the validating methods can be classified into

two categories, as shown in Figure 11.

In the first category, the inference result and the

gold standard database are used as the input. Because

there are no appropriate benchmark data sets, it is a

challenge to create a database with high quality.

Usually, the PPIs in the database are collected from

Figure 9: Illustrations of the complex generation procedure in CODEC and CACHET. To minimize the effects of
false positive interactions, the CACHET method uses the reliability scores such as SA, PE and DC scores to measure
the bait-prey similarity while CODEC approximates the reliability of bait^prey links just by the degree of the
vertices.

Figure 10: The nested clustering method. The nested
clustering algorithm has two steps: (i) grouping baits
into clusters based on prey profile similarities, and (ii)
identifying nested clusters of preys that share similar
abundance level in each bait cluster. Each bicluster cor-
responds to a submatrix consisting of a bait cluster
and an associated nested prey cluster. For example, the
nested clustering first groups bait 1 and bait 2 into the
bait cluster, and then detects the nested prey cluster
that is composed of prey 1, prey 2 and prey 3.
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multiple sources. These PPIs are filtered out both sys-

tematically and manually to remove low-quality/

erroneous interactions. In some databases, the col-

lected interactions are classified by the type, such as

binary physical interactions and co-complex associ-

ations. We list some available PPI databases in

Table 4. Using these databases, we can assess the

predicted interactions and complexes through some

standard performance indices. Some commonly used

indices for evaluating the prediction performance are

listed in Table 5.

The database-based approach is simple and easy to

deploy. Meanwhile, it will be very accurate if the

database is complete and all entries in the database

are valid. Therefore, for some organisms or species

with high-quality PPI database, the database-based

approach is the best choice. However, no database

is complete and false-positive PPIs may be contained.

Anyway, this method is currently the most widely

used approach in performance comparison, both for

protein–protein interaction inference and protein

complex detection.

Alternatively, the reference-free method only uses

the inference result and does not need a database as

the input. However, this approach requires the re-

petitive execution of the original PPI inference

methods over some simulated data sets, as shown

in Figure 12. In [5, 7, 30], under the null hypothesis

that a bait captures a list of preys randomly, many

shuffled data sets are first generated from a distribu-

tion of the abundance of prey proteins. Hence, the

simulated data sets are statistically comparable to the

original one. Then a p-value representing the likeli-

hood that a given score for the interaction from the

original data would occur in the random data sets by

chance can be calculated. Finally, the filtering criter-

ion such as false discovery rate (FDR) < 5% can be

used to control the quality of reported interactions.

In [57], a permutation framework is adopted as

well. The interactions are firstly evaluated with a

two-stage Poisson model, and then the procedure

of Westfall and Young [58] and the method of

Benjamini-Hochberg [59] are employed to estimate

the family-wise error rate (FWER) and FDR,

respectively.

As the reference-free methods often need to run

the original inference algorithm multiple times, it

may be time-consuming or prohibitive. However,

in the case that resources are limited, i.e. there is

no available reference data set, this strategy can be

used as an alternative method for validating the ana-

lysis results.

Overall, the problem of validating the inference

results from the AP-MS data is only partially solved.

We suggest to use multiple validation methods if

possible. Inevitably, each validation method has cer-

tain bias. The utilization of more than one validation

method in the evaluation can provide more convin-

cing and comprehensive performance assessment.

CONCLUSIONS
The fast generation of large-scale AP-MS data makes

it possible to study protein–protein interactions in a

computation-intensive and high-throughput manner.

Apparently, the need for computational methods is

inevitable. During the past years, we have witnessed

the rapid advances in developing the effective algo-

rithms for analyzing the AP-MS data. However, the

data analysis problems in this area are far from

resolved and there are still many computational chal-

lenges to overcome:

� Scoring the co-complex interactions. Scoring

the co-complex interactions remains an open

problem. On one hand, many scoring algorithms

are developed only for one special type of data set

and do not have strong universality. On the other

hand, only the protein pairs that occur in the same

purification are considered to be the candidates

Table 3: Summary of methods for detecting protein complexes from the AP-MS data

Method Input Advantages Disadvantages

MCODE [27] PPIs from pre-processing
the AP-MS data

Flexible since there are many
different choices in each phase.

Losing some useful information when
the original AP-MS data is converted
into the binary PPI network.

Markov clustering [41]
DPClus [42]
CODEC [46] Raw AP-MS data (qualitative) Preserving the information contained

in the AP-MS data.
Only focusing on the clusters with

high-density; failing to use the quantitative
information.

CACHET [45]

Nested clustering [48] Raw AP-MS data (quantitative) Complicated and time-consuming.
BI-MAP [49]
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while those ones which never occur in the same

purification but may interact with each other are

ignored.

� Inferring the direct interactions from the
indirect ones. Inferring the direct/physical PPIs

from the AP-MS data is far from solved. To date,

the methods to solve this problem usually take the

raw AP-MS data as the input. An alternative way

is to infer the direct PPIs from the co-complex

interactions (the indirect ones). In this way, co-

complex interactions are first predicted from the

AP-MS data and then they are used to construct

the networks. The network deconvolution meth-

ods such as [60] and [61] are finally employed to

recover direct interactions in networks.

� Detecting the protein complexes with low-
density. Until now, methods of detecting protein

complexes from the AP-MS data mostly mine the

clusters with high-density, and protein complexes

with low-density are always neglected. Novel

advanced algorithms are needed to solve this

problem.

� Improved utilization of the quantitative abun-
dance. With the development of technology,

more accurate quantitative information can be

gained. It is important to make full use of these

resources to build more accurate models.

Figure 11: The categorization of validation methods. Based on whether using additional reference data sets, the
validation methods can be classified into two categories. In the first category, both the inference result and the
gold standard database are taken as the input for performance evaluation. We can evaluate the inference result
with some standard performance indices by comparing the prediction result to the reference database. In the
second category, the validation methods generally have the following steps: (i) creating multiple simulated data sets
that have the same characteristics as the original AP-MS data, (ii) performing interaction prediction or complex de-
tection on these random data sets with the same algorithm, and (iii) calculating the family-wise error rate or
false-discovery rate by comparing the original inference result with those generated from the simulated data sets.

Table 5: Indexes for evaluating prediction
performance

Index Formula

Sensitivity TP=ðTPþ FNÞ
Specifity TN=ðTNþ FPÞ
Positive predicted

value (PPV)
TP=ðTPþ FPÞ

Negative predicted
value (NPV)

TN=ðTNþ FNÞ

Accuracy ðTPþ TNÞ=ðTPþ FPþ TNþ FNÞ
F-measure 2 � ðPPV � SensitivityÞ=ðPPV þ SensitivityÞ

TP and TN stand for true positives and true negatives, respectively. FP
and FNmean false positives and false negatives, respectively.

Table 4: PPI databases available online

PPI database URL

MIPS [50] http://mips.helmholtz-muenchen.de/proj/ppi/
BioGrid [51] http://biodata.mshri.on.ca/grid/servlet/Index
HPRD [52] http://www.hprd.org/
IntAct [53] http://www.ebi.ac.uk/intact/
DIP [54] http://dip.doe-mbi.ucla.edu/dip/Download.cgi
MINT [55] http://cbm.bio.uniroma2.it/mint/
HINT [56] http://hint.yulab.org
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� Validating the results. To date, no PPI database

is complete and false-positive PPIs may be con-

tained, which results in that the assessment of the

results is not accurate. More complete database

with high-quality should be created in the future

and the validation methods without using the

database also need to be improved.

� Integrated analysis by incorporating protein
identification. The analysis of the bait–prey

data is only one part of the entire AP-MS experi-

ment. Because many new errors may be intro-

duced during the processes of the peptide

identification and the proteins inference, analyzing

the AP-MS data from a systematic perspective may

be a new choice.

The challenges listed above are not complete but

provide some interesting research problems. We

hope that our review as well as the challenges

highlighted here will provide valuable insights

into driving future research for further advancing

the state-of-the-art technologies in computa-

tional prediction and analysis of protein–protein

interactions and protein complexes from the

AP-MS data.

Key Points

� Raw AP-MS data sets are noisy and error-prone; computational
methods should be used to analyze these data sets.There are at
least four key computational issues in the analysis of AP-MS
data: prediction of co-complex interactions, inference of phys-
ical interactions, detection of protein complexes and validation
of the results.

� We review some representative algorithms for each computa-
tional issue and classify them into different categories according
to whether using quantitative information and the underlying
scoring strategies used.

� We list some computational challenges in the analysis of the AP-
MS data: scoring the co-complex interactions, inferring the
direct interactions, detecting the protein complexes with
low-density, improved utilization of the quantitative abundance,
validating the results and integrated analysis by incorporating
protein identification.
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