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Abstract

Enhancer–promoter regulation is a fundamental mechanism underlying differential transcriptional regulation. Spatial
chromatin organization brings remote enhancers in contact with target promoters in cis to regulate gene expression.
There is considerable evidence for promoter–enhancer interactions (PEIs). In the recent years, genome-wide analyses
have identified signatures and mapped novel enhancers; however, being able to precisely identify their target gene(s)
requires massive biological and bioinformatics efforts. In this review, we give a short overview of the chromatin land-
scape and transcriptional regulation. We discuss some key concepts and problems related to chromatin interaction
detection technologies, and emerging knowledge from genome-wide chromatin interaction data sets. Then, we critically
review different types of bioinformatics analysis methods and tools related to representation and visualization of PEI
data, raw data processing and PEI prediction. Lastly, we provide specific examples of how PEIs have been used to elucidate
a functional role of non-coding single-nucleotide polymorphisms. The topic is at the forefront of epigenetic research, and
by highlighting some future bioinformatics challenges in the field, this review provides a comprehensive background for
future PEI studies.
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Introduction

The genetic information of each individual cell in the human
body is coded by the same DNA sequence. Unique cellular
phenotypes are therefore accomplished through different levels
of gene, RNA and protein regulation. Transcriptional regulation
of gene expression is orchestrated by a series of DNA-binding
proteins and protein complexes known as ‘transcription factors’

(TFs), ‘co-activators’, ‘co-repressors’ and the RNA polymerase II
(RNAPolII). TF binding mainly occurs at clusters of DNA regula-
tory sequences called ‘promoters’ and ‘enhancers’ (for a current
definition of promoters and enhancers, see Boxes 1 and 2), and
it is highly dependent on the differential accessibility and activ-
ity of the primary DNA sequence packed into chromatin.
Generally, chromatin harbours different compaction levels, and
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transcriptionally active regions possess a more open structure.
The openness of the chromatin also depends on the gene rich-
ness of the region [1]. Nucleosomes are the first level of chroma-
tin organization, and are made up of an octamer of histones
(H2A, H2B, H3 and H4) around which DNA is wrapped. Genome-
wide mapping of histone modifications has shown a correlation
of specific histone post-translational modifications with tran-
scriptionally active (e.g. trimethylation of histone H3 lysine 4:
H3K4me3) and silenced genes (e.g. H3K27me3), enhancer activ-
ity (e.g. H3 lysine 27 acetylation: H3K27ac) and heterochromatin
(e.g. H3K9me3) [2–5]. Histone modifications may alter the inter-
action between histone and DNA or act as a binding platform
for proteins or protein complexes that may mediate changes to
chromatin states [6, 7].

Box 1. Promoters

The promoter is the region of DNA where initiation of
transcription takes place. It includes the TSS(s) of the
gene in question, but how far it extends is not precisely
defined. The proximal promoter encompasses the region
immediately upstream (up to a few 100 bp) from the core
promoter [149], although arbitrary distance cut-offs are
often seen. Best defined is the core promoter, which is
the narrow DNA segment within which transcription
initiates, or approximately 640–50 bp around the TSS
[150, 151].

The functional sequence elements of the core promoter,
important for directing the RNAPolII to initiate RNA
synthesis at a particular position, have been studied for
decades. Several functional cis-elements have been iden-
tified such as the TATA-box and the Inr element, as well
as a growing number of additional elements such as DPE,
BREu and BREd, DCEs (recently reviewed in [152, 153]).
These elements act together as an assembly platform for
GTFs and co-activators, leading to formation of the
preinitiation complex. The precise composition of core
promoter cis-elements varies from gene to gene, probably
allowing for diversity in the complexes assembled at
different promoters. This diversity is also reflected in a
diversity of GTFs, the use of which may vary during
differentiation [154].

Global analyses of thousands of genes and their TSS
have revealed that not all core promoters are equal, nei-
ther in composition, nor in function. At a first level, it is
possible to classify core promoters in two main groups
based on the number and clustering of TSSs and the
GCcontent of the region [151, 155]. Sharp or focused pro-
moters show a peaked distribution of TSSs with one or a
few TSSs closely spaced within a few nucleotides. They
are most often tissue-specific. Broad promoters show
TSSs scattered over a region of 50–100 nucleotides.
These promoters are usually active in many tissues, and
they are often located in strong nucleosome-free regions
with the first downstream nucleosome being firmly pos-
itioned. Because the sharp promoters are governed
mainly by the action of various TFs, while the broad
class is more dependent on chromatin accessibility, one
may think of them as transcriptionally versus epigeneti-
cally controlled.

Gene regulation in cis because of binding of proteins at
specific DNA elements far from their target genes has long
been recognized as fundamental in higher eukaryotes [8–11].
However, the idea that chromatin looping was responsible
for long-range regulation in cis has become widely accepted
only after the development of the ‘Chromosome
Conformation Capture’ (3C) technology by Dekker and co-
workers [12, 13]. Promoter–enhancer interactions (PEIs) rep-
resent a subset of chromatin interactions that are central to
the currently accepted model of transcriptional regulation.
There is increasing support for PEIs being necessary for tran-
scriptional regulation of an enhancer’s target gene. For ex-
ample, there is evidence that the expression of a target gene
is affected by gain or loss of competing promoters, lack of
some PEI-associated proteins and addition of PEI-disrupting
insulators [14], as well as evidence that chromatin inter-
actions are highly associated to gene co-expression rates
[15]. However, important challenges remain, such as finding
the mechanisms that mediate PEIs, the building of high-reso-
lution PEI maps in different cell types and the identification
of functional interactions.

There are several recent reviews reporting on different
aspects of PEIs [14, 16–23]. However, there is a paramount need
for a review of the wide spectrum of bioinformatics methods
developed in the field. In this article, we first give a brief de-
scription of the chromatin complexity landscape, chromatin
looping mechanisms and limitations of the experimental meth-
ods. Then, we critically review associated bioinformatics issues
such as data representation and visualization, raw data pro-
cessing, and PEI prediction, while we highlight some of the fu-
ture challenges in the field.

Biological background
Our knowledge of the chromatin landscape is becoming
increasingly more complex

Chromatin interactions span different types of regulatory elem-
ents. In addition to PEIs, promoter–promoter looping or enhan-
cer–enhancer looping [24], polycomb response element–
promoter interactions (in Drosophila), insulator–insulator inter-
actions and 50-30 gene looping have been mapped [25]. Exons
can interact with both enhancers and promoters, and this
occurs at DNase I hypersensitive sites (DHS) [26]. Moreover, the
loci of a class of long non-coding RNAs called activating RNAs
have been reported to behave in an enhancer-like manner to
form DNA loops with their neighbouring genes through the
Mediator complex [27]. Distinguishing PEIs from all other chro-
matin interactions is a first challenge that demands both accur-
ate enhancer detection methods and comprehensive genome
annotation efforts.

Current research has also shown at least two different types
of chromatin interactions. Besides transcription-dependent
chromatin interactions of promoters and enhancers, several
studies have shown that the spatial configuration of the chro-
matin may be established and not affected by transcription [28,
29]. Understanding the differences between a transcription-
dependent interaction and a transcription-independent inter-
action is a challenge with significant consequences for the way
that we correlate PEI data to transcription data.

Finally, as our understanding of enhancers and promoters
increases, their difference appears to diminish. Enhancers are
transcribed, assemble general transcription factors (GTFs),
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RNAPolII and elongation factors [16, 30, 31]. Enhancers and pro-
moters appear to have a common architecture with similar fre-
quencies of core promoter cis-elements and highly positioned
flanking nucleosomes [32]. Some intragenic enhancers have
been found to act as alternative promoters [33], while some pro-
moters have also been shown to share properties with insula-
tors, making the distinction of regulatory elements in the
chromatin landscape even more blurry [34]. It has been sug-
gested that the best distinction between enhancers and pro-
moters are the differences in the produced RNAs, such as
transcript stability, level, length, polyadenylation and splicing

[30, 32], with messenger RNAs (mRNAs) being longer and more
stable than enhancer RNAs (eRNAs). New unified models of
the transcriptional milieu have been suggested, where the
promoter–enhancer distinction has been eliminated [35]. This
would imply a reformulation of the PEI concept.

There are several models of chromatin looping, and
some of these biological phenomena may co-exist

In recent years, the discussion in the field has been focused on
the nature of chromatin loops and the forces that generate and

Figure 1. Models of chromatin organization. A diagram of different models of chromatin organization in the nuclear space. Interphase chromatin that interacts with

the nuclear lamina (grey), nucleolus (green), nuclear pores (red), transcription factories (orange) and splicing speckles (black) are depicted here. Generally, lamin- and

nucleolar-associated domains are transcriptionally repressed and have a more condensed chromatin, whereas chromatin that loops to the nuclear pore, transcription

factories and splicing speckles are transcriptionally active and therefore have a more open chromatin structure (here, depicted as 10 nm chromatin fibre). Enhancers

can activate gene expression over a distance and contain binding sites for TFs that recruit co-factors (activators or repressors). A promoter–enhancer looping mechan-

ism mediated by cohesin (brown), CTCF (purple) and the mediator complex (red) that brings the enhancer into close proximity to its target promoter are presented in

the enlarged box. The enhancer and promoter are marked with white boxes, and the transcription start site of the transcribed target gene is annotated with an arrow.

TFs (green) and co-factors (yellow) bind the enhancer and are brought close to the basal transcription machinery at the promoter. RNAPolII (orange) transcribes pre-

mRNA from the target gene and eRNA from the enhancer. Some of these models may co-exist for different PEIs; however, there are also other models that we could

not show. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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stabilize them [19]. One model suggests that rigid ‘active chro-
matin hubs’ (ACH) are formed at regulatory elements in the
form of complexes including TFs, transcription machinery
proteins and special ‘communication’ proteins, which recruit
promoters to the ACH [19, 36].

Box 2. Enhancers

Enhancers are clusters of distal DNA sequences that can in-
crease transcription of their target gene(s) in cis. The dis-
tance of enhancers to their target promoter(s) vary, and in
metazoans, an enhancer is placed from 100 bp to Mb away
from the regulated gene on the same chromosome [114].
The enhancers can be upstream or downstream of their tar-
get genes or even placed in the gene body of another gene,
and enhancer regulation can bypass other genes independ-
ently of orientation [18]. Enhancer sequences contains regu-
latory elements with multiple binding sites for TFs, but we
have a poor understanding of a sequence code for enhan-
cers, and although sequence conservation of enhancers has
been used with some success, enhancers may have modest
or no conservation [18]. Enhancer chromatin is ‘marked’ by
histone modifications that, in different combinations and lev-
els, and are used to classify active (e.g. H3K4me1/H3K27ac)
and intermediate or poised (e.g. H3K4me1/H3K27me3) enhan-
cer regions [156]. Other histone modifications and histone
variants have also been found to associate with enhancers
(Table 3). Enhancer–promoter looping has been shown to be
necessary for gene activation [157]. However, it has also been
shown that opening of repressive enhancer–promoter loops
lead to transcriptional activation [146, 158].

The activity of an enhancer is often restricted to a cell type
or tissue, related to developmental or environmental condi-
tions. Approximately 80% of all characterized mouse enhan-
cers show tissue-specific expression [159]. RNAPolII has
been found to overlap with enhancers (Figure 1) [160].
eRNAs are generally short non-coding RNAs that are bidirec-
tionally transcribed from active enhancers and therefore
used to classify enhancer activity [76, 161]. The presence
of eRNAs has been suggested to precede the activation of
nearby genes and eRNAs may have a role in enhancing or
stabilising PEIs [27] or promoting elongation [162].

The mammalian genome contains around 23 000 genes, and
an estimate of 1 million enhancers, which suggest that there
is about four enhancers per gene per cell type [20]. Different
enhancers may regulate the same target gene dependent on
developmental stage or cell type. The combined role of
groups of enhancers has also been studied. LCRs are a group
of multiple enhancers responsible for coordination of tem-
poral expression of linked genes on differentiation or during
development (examples are LCR-regulating globin genes, or
Global Control Region regulating HOXD genes) [163]. High
levels of subunits of the Mediator complex (Med1) mark a
group of putative strong enhancers spanning from a few kb
to 50 kb, termed ‘super-enhancers’ [120, 164]. The beta-
globin LCR has been defined as a ‘super-enhancer’ in human
K562 cells [120].

This model is challenged by a second model that suggests
that ACHs are better described as ‘active nuclear compartments’,
where chromatin fibres with regulatory sequences get trapped in
space with the aid of ring-like cohesin complexes (Figure 1) [19]. It

has been reported that cohesin co-localizes with Mediator com-
plexes at enhancers and promoters, where it has a role in media-
ting PEIs [37]. Furthermore, cohesin is recruited to sites bound by
the insulator protein CTCF (CCCTC-binding factor), even though
some sites are unique for cohesin [38, 39].

A third model suggests that insulator elements put enhan-
cers and promoters in close contact [19]. Several mechanisms of
insulator function have been proposed. According to the ‘topo-
logical loop model’, insulators divide the genome in independ-
ent loops corresponding to topological domains, which favour
the contact between promoters and enhancers [40]. Polymer
simulations have supported the existence of both insulation
and facilitation processes behind PEIs [41]. CTCF has been found
to bind and link two insulators that indirectly put promoters
and enhancers in close proximity [13, 42]. However, CTCF can
also directly bind to an enhancer and a target promoter and link
them [43]. Another scenario describes CTCF binding to an insu-
lator and a promoter [44, 45].

A fourth model suggests that genes and regulatory elements
could be repositioned to nuclear compartments such as splicing
speckles and transcription factories (Figure 1) [46, 47]. Splicing
speckles are structures enriched in the Serine/arginine-rich (SR)
splicing proteins. Transcription factories are discrete polymer-
ase and transcription foci in the nucleus [48]. Current models
depict the factory as a polymorphic compartment with a ‘diam-
eter’ of �60–200 nm [35], where RNAPolII molecules remain sta-
tionary in the ‘surface’, while the core is rich in proteins such as
TFs, co-activators, chromatin remodellers, histone modifiers,
RNA helicases, and splicing factors. Chromatin loops can bind
to RNAPolII molecules on the surface of these factories, and can
do it multiple times and become organized around them in
complex shapes, such as ‘rosettes’ [35, 49]. Many transcription
factories are specialized, in the sense that they are enriched in a
given TF, and several genes regulated by this TF are repos-
itioned to this factory and transcribed [48]. Examples of genes
that move to transcription factories include interleukin-coding
genes and their regulatory regions, globin locus and its Locus
Control Region (LCR), the human pituitary growth hormone
gene and its LCR, and Hox genes [35].

In a fifth model, genes are looping to or away from nuclear
landmarks such as the nuclear lamina, heterochromatin, nu-
cleolus and nuclear pore complexes (NPCs) (Figure 1) [50]. The
nuclear envelope is made up of a double lipid membrane per-
forated by NPCs that allow import and export into the nucleus.
A dense mesh of nuclear lamina proteins coats the inside of
the nuclear membrane. Lamin-associated chromatin domains
are generally gene poor, late replicating and rich in repressive
histone marks, whereas NPC-interacting chromatin sites com-
prise genes that are modestly transcribed [51].
Transcriptionally inactive chromatin is also found at the per-
iphery of the nucleolus [52]. The ‘stemness’ genes (Oct4, Klf4
and Nanog) that are important for pluripotency in embryonic
stem cells (ESCs) move to the periphery on neuronal differen-
tiation concomitant with gene silencing [53]. Moreover,
polycomb-repressed Hox genes can fold into chromatin do-
mains (termed polycomb bodies in flies) [54].

Gene regulation may comprise all five models. Rieder et al.
have found that both transcription factories and splicing
speckles could have a role in PEIs [55]. Rao et al. report that
most chromatin loops are anchored by CTCF (86%) and the
cohesin subunits RAD21 (86%) and SMC3 (87%) (and to a lesser
extent, by ZNF143 and YY1), supporting the role of CTCF and
cohesin in PEI regulation [56]. What is the cause or conse-
quence for transcriptional regulation in these models is still
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uncertain. However, all models point to the necessity of mod-
elling of spatially co-localized groups of genomic regions (and
not only linear sequences) to understand transcriptional
regulation.

The limitations of the existing experimental methods
are a source of bioinformatics challenges

Insights into PEIs have been obtained by different techniques.
Imaging techniques, mainly with Fluorescence In Situ
Hybridization (FISH), have extensively been used to study
three-dimensional (3D) folding of chromosomes, and positioning
of gene loci and chromosomes in the nuclear space [57]. Immuno-
FISH has revealed that genes are associated with specific sub-
nuclear structures, such as transcription factories and the nuclear
periphery [58]. Moreover, this method has shown that active gene
loci can loop out of their chromosome territory [59, 60], and have
been used to characterize PEIs for gene loci such as Hoxb13, Shh
and the olfactory receptor [61–63]. However, FISH can only be
used for a limited number of DNA loci at a time, and not in a
high-throughput manner, and its spatial resolution is limited.

Development of the family of ‘3C techniques’ has made it pos-
sible to study chromatin organization on a genome-wide scale [64].
These methods include 3C [12], 4C (circular 3C) [65], 5C (3C-carbon-
copy) [66], Chromatin Interaction Analysis with Paired-End-Tag
sequencing (ChIA-PET) [67] and Hi-C (Genome-wide 3C) [68]. 3C
and 4C analysis require choosing a target locus (a ‘view-point’) to
map interaction with another locus or genome-wide, respectively.
5C probes all interactions with multiple selected viewpoints within
a confined genomic region (typically 1 Mb), while Hi-C allows un-
biased genome-wide analysis of chromatin interactions with reso-
lutions that have been improving up to 1 kbp [56]. ChIA-PET is a
combination of 3C, chromatin immuneprecipitation (ChIP) and
paired-end tag sequencing that allows the genome-wide identifi-
cation of potential interacting loci bound by a given TF, RNAPolII,
or enriched by histone modifications [69]. Capture Hi-C (CHi-C) is a
recent method to map interactions of promoters with distal ele-
ments by using solution hybridisation selection to enrich for pro-
moters and their contact regions in Hi-C libraries [165].

3C-based methods generally determine the frequency of inter-
actions in a population of cells for which a pair of loci is close
enough in space to become cross-linked (that is, approximately in
the 10–100 nm range), at the time that the cells were fixed [17].
However, spatial proximity alone does not imply a functional
interaction between loci. Dekker et al. suggest at least four differ-
ent types of processes leading to spatial proximity: a direct func-
tional interaction, a baseline interaction (random collisions), a
bystander interaction (DNA close to a direct interaction will be
also close as a consequence of the former) and an interaction
with the same nuclear structure (such as transcription factories)
[17]. Recent criticism has been directed against all ‘formaldehyde
cross-linking’-based technologies such as ChIP-seq and 3C be-
cause of the fact that cross-linking efficiency varies between dif-
ferent proteins, or between proteins and DNA, and the fixation
may trigger DNA damage response, and that the chromatin con-
tacts are reflecting the cell populations and not individual cells
[64, 70, 71]. Improvements to the Hi-C protocol, such as increasing
the sequencing depth and decreasing the presence of random li-
gations have been put forward [64].

A recent study has systematically compared FISH and 5C
measurements of the HoxD locus in ESCs and found that although
there were several agreements between the data sets, there were
conflicting observations where 5C maps display a higher inter-
action frequency for a region that by FISH was observed as

decompacted [62]. This discrepancy raises the issue of whether
there is a need of reassessment of current bioinformatics analysis
methods for 3C-based data. Furthermore, both FISH and 3C
methods study chromatin in cross-linked cells and do not address
the dynamic movement of specific loci. A major frontier in the
field will be to track the movement of individual gene loci within
the nucleus, and recent development of the Clustered Regularly
Interspaced Short Palindromic Repeats-associated protein-9
nuclease (CRISPR/Cas9) and chromosomal tag systems hold prom-
ise to become powerful technologies for live-cell imaging [72–74].

Another approach is the Cap Analysis of Gene Expression
(CAGE) [75]. It has been shown that both enhancers and genes
that are in contact are often transcribed [35]. Moreover, eRNA lev-
els correlate with mRNA levels at nearby genes and, at the same
time, eRNA transcription requires the presence of the promoter
[14, 76]. The Functional Annotation Of The Mammalian Genome
Phase 5 (FANTOM5) consortium used CAGE to detect active en-
hancers in over 800 samples spanning most human cell types
and tissues [77]. FANTOM5’s pipeline starts by building a CAGE-
based transcription start site (TSS) atlas, then making a distinc-
tion between eRNAs and mRNAs to detect active enhancers. To
detect PEIs, the authors examined Pearson correlations in expres-
sion between all possible promoter–enhancer pairs within 500
kbp. As a result, 40% of the active enhancers were associated with
the nearest RefSeq (an NCBI Reference Sequence Database) TSS,
while 64% of the enhancers had at least one correlated RefSeq
TSS within 500 kbp [77]. This is in contrast to the results of Sanyal
et al. [78], who reported that only 7% of the loops are established
with the nearest gene measured by 5C in 1% of the human gen-
ome (ENCODE pilot project regions) in three different cell types
(GM12878, K562 and HeLa-S3 cells).

Recently, FANTOM5 Phase2 has published a CAGE analysis
of different time courses in 19 human and 14 mouse cell lines
[79]. The results show that 13% of human enhancers and 20% of
mouse enhancers significantly changed expression over time in
at least one time course. More interestingly, promoters and en-
hancers are not co-expressed over time, as eRNA transcription
is generally an early event and rapidly returns to a baseline [79].
This observation has consequences for eRNA-based prediction
of PEIs, as PEIs may be more stable than the rapid eRNA tran-
scription, and therefore other parameters must be included.
Also, correlating expression of enhancers with nearby genes is
limiting, and potential long-range PEIs are left out.

The estimated size of the Promoter–Enhancer
Interactome depends on cell type, experimental method
and data processing methodology

Some of the first systematic genome-wide studies of chromatin
interactions were performed using the ChIA-PET technology.
Chepelev et al. used ChIA-PET with an H3K4me2 antibody in
T cells to identify 6520 long-distance (>20 kb) chromatin inter-
actions [80]. In this data set, the authors identified 2067 poten-
tial enhancers interacting with 1619 promoters, generating a
network of 2373 promoter–enhancer, 478 enhancer–enhancer
and 3669 promoter–promoter interactions. In total, 9% of these
enhancers were shown to interact with multiple promoters
(several genes controlled by the same enhancer), while 25% of
all promoters interact with more than one enhancer [80, 81]. Li
and co-workers performed a similar study using ChIA-PET to
map long-range interactions with RNAPolII in five cultured
human cell lines (MCF7, K562, HeLa, HCT116 and NB4). Their
network contained 938 promoter–gene internal regions, 6530
promoter–enhancer, 4106 enhancer–enhancer and 8282
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promoter–promoter interactions across the different cell lines
[24]. In another similar work, DeMare et al. built a cohesin-associ-
ated interaction map in mouse limb bud [82]. In this study, 2264
cohesin (SMC1A)-based interactions were found, where 1491 were
co-occupied by CTCF, showing that these two proteins are
involved in tissue-specific PEIs. The authors also observed cohe-
sin-associated interactions that are maintained across tissues,
where promoters become activated on differentiation [82].

Hi-C started as a low-resolution technology, which made it
more useful to study higher-order chromatin models rather
than specific PEIs [68]. However, this has been changing rapidly.
Jin et al. performed a high-resolution Hi-C study (5–10 kbp reso-
lution) in human fibroblasts [82]. The study reported over a mil-
lion long-range interactions and also showed that, for Tumor
Necrosis Factor (TNF)-alpha signalling, TNF-alpha responsive
enhancers are in contact with promoters even before signalling
starts, suggesting that the chromatin interaction landscape
may be stable. In the most recent high-resolution genome-wide
study [56], Rao and colleagues have generated a genome-wide in
situ Hi-C study for nine cell lines in human and mouse, with a
kilo base resolution (GM12878 cells were mapped at a 950 bp
resolution in two biological replicates, while the other eight cell
types were mapped at 5 kb resolution but only one biological
replicate each). Under their experimental settings, proximity li-
gation was performed in intact nuclei, to reduce the number of
spurious contacts that may happen in solution. The chromatin
interaction landscape shown by the in situ Hi-C study includes
approximately 10 000 chromatin loops, which are enriched in
PEIs, that is, 30% of the peaks include an annotated promoter
and a predicted enhancer (versus 7% expected by chance). In
addition, the set of genes participating in PEIs had higher ex-
pression than the set of genes not associated to a loop. Loops
were also found to be mainly short, with only 2% of the peaks
corresponding to loops that are >2 Mb long [56]. A recent tech-
nology called HiCap reports a network of 15 905 promoters and
71 984 distal regions in mouse ESCs [84]. The fact that different
high-throughput studies report different numbers of chromatin
loops represents a challenge for both PEI data processing meth-
ods and PEI predictions.

Bioinformatics challenges
What is the best way to represent PEI data?

Chromatin interaction data have been traditionally represented
either as a bi-dimensional heatmap or as a linear graph with
ordered nodes. The «heatmap» view has been especially useful
for the visual detection of regions enriched on intra-region
interactions (so-called «compartments» or «TADs») (Figure 2).
The alternative is the use of «arcs» that connect two interacting
sites (Figure 3). This view is mainly useful to give a sense of
interactions under the network analysis framework. Heatmap
and arc views are related to contact maps generated either as
matrices or as lists of edges, respectively.

A Hi-C contact map displays all chromatin interactions found
in an experiment. Firstly, the genome is partitioned into bins of
fixed size. Then, a contact matrix is generated, where every cell
corresponds to the number of contacts between the associated
pair of loci. Such a matrix can be visualized as a ‘heatmap’, where
pixel intensity correlates to the likelihood of such an interaction.
It can be easily observed that loci usually interact more often with
nearby loci (Figure 2). Heatmaps display triangular regions where
all loci seem to heavily interact with each other, while poorly
interacting with loci outside this region; therefore, a cell’s genome

has been suggested to be divided into domains enriched on intra-
domain chromatin interactions, called topological associating do-
mains (TADs) (Figure 2) [85, 86]. TADs have been characterized by
having boundaries enriched in CTCF motifs and Short
Interspersed Nuclear Elements (SINE) retrotransposons, as well as
transfer RNAs. Loss of CTCF has been shown to decrease intra-
TAD interactions and increase inter-TAD interactions [87]. TADs
have been described to have a median size of 400–500 kb, and
their number has been proposed to be over 2000, covering 90% of
the genome [17]. Recently, improved resolution has allowed a
finer detection of domain boundaries and therefore smaller do-
mains have appeared. Rao et al. have identified ‘contact domains’
with a median size of 185 kb [56]. However, in both cases (TADs
and contact domains), CTCF-binding sites are found at the boun-
daries, even though CTCF does also bind inside TADs [17, 56].

There are several reasons why the matrix has been the dom-
inating conceptual representation for chromatin interaction
data, here discussed in terms of Hi-C. Firstly, many of the early
analyses, such as the detection of global compartments, fit nat-
urally with principal component analysis on a matrix represen-
tation. Secondly, strong local interactions turn up along the
diagonal, while more-specific, strong, long-range interactions
turn up as deviating (high valued) pixels away from the diagonal
(Figure 2). Similarly, TAD structure may be seen as demarcated
triangles along the diagonal (Figure 2). Finally, the early Hi-C
studies were of a relatively low resolution (e.g. 1 Mb), meaning
that full interaction matrices could be conveniently represented
and visualized. With the recent developments of Hi-C technol-
ogy, where resolution is approaching that of single restriction
fragments and focus is shifting towards individual specific
interactions, we expect the representation of data to be
rethought, and we argue that the graph may be a more suited
metaphor. Dense graphs, such as those resulting from the early
Hi-C experiments, are efficiently represented as an adjacency
matrix; however, the size of an adjacency matrix grows propor-
tionally with the square of the number of vertices (bins), and,
therefore, an adjacency list would be much more efficient, typ-
ically several orders of magnitude smaller. Similar reductions of
storage requirement could also be achieved by using some form
of sparse encoding of an adjacency matrix, but that would be an

Figure 2. An example of a Hi-C contact map. Hi-C contact map of a segment of

mouse chromosome 11, generated using Sushi [90] from Dixon et al. [85] data. A

TAD and a long-range interaction between two loci are annotated. A colour version

of this figure is available online at BIB online: https://academic.oup.com/bib.
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unnecessarily complex approach to achieve essentially the
same thing. In addition to concerns around storage efficiency,
the shift in focus from global organizational features to specific
local interactions that is allowed by the increased resolution

and accuracy also bears better together with an adjacency list.
In the context of PEIs, the ability to directly read out the list of
interactions associated with a given promoter or enhancer is
convenient.

Figure 3. Long-range interactions functionally connect disease-associated SNPs with disease candidate genes. (A) Physical proximity between DEXI gene locus and

autoimmune disease-associated SNPs in the intron of CLEC16A. Hi-C data from human foetal lung (IMR-90) cells (from the Ren lab, [85]) show interactions between

CLEC16A intron 19 and the DEXI locus. The enhancer marks in IMR-90 cells for H3K4me1 and H3K27ac are shown in green and blue, respectively, and the filter thresh-

old for the Hi-C data was set to 5. SNPs in the region are in black, and the eQTL SNP rs12708716 is marked in red. The arc (pink) for interacting regions (grey) is

highlighted with an arrow. (B) Long-range interactions links obesity-associated variants in FTO with the IRX3 locus. Hi-C data in human foetal lung (IMR-90) cells show

interactions between the first intron of FTO with IRX3. The tracks for H3K4me1 and H3K27ac are shown in green and blue from IMR-90 cells and different human brain

tissues from the NIH Roadmap Epigenomics Mapping Consortium. The filter threshold for the Hi-C data was set to 10. SNPs in the region are in black, and the BMI-

associated SNP rs9930506 is marked in red. Arcs (pink) for interacting regions (grey) are highlighted with arrows. These public data sets are available and visualized

with the WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/). dbSNP release 137 is shown in dark green, and the The National Human Genome

Research Institute (NHGRI) Catalogues of GWAS are visualized in UCSC browser (http://genome-euro.ucsc.edu) [166]. A colour version of this figure is available online at

BIB online: https://academic.oup.com/bib.
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There is no widely established format for representing chro-
matin interaction data, and there has been a tendency for every
major study to provide their data in their own ad hoc format (see
[68] versus [56], as an example). A formalized standard for repre-
senting interaction data in the form of an adjacency list has
been provided by the GTrack format. This represents bins (frag-
ments) as genomic coordinates associated with an ID, and
based on this represents interactions as a list of IDs for the
neighbours of a vertex [88]. Another partly formalized represen-
tation is an extension of the ‘bed’ format, termed «bedpe»
(Browser Extensible Data Paired-End). This format consists of
ten columns, including the chromosome, starting position and
ending position of each interacting region, a score, and others,
and it was initially developed in the framework of the BEDTools
project [89]. The «Sushi» R package [90] makes use of an
extended version of this format, adding an additional column to
specify the data set (and, therefore, the corresponding colour in
an arc view), while relating the score to the height of the arcs.

Currently, we also expect the development of standard file
formats that are prepared to store information regarding the
hierarchical nature of genomic elements (chromosomes, com-
partments, TADs, loops, promoters and enhancers, epigenetic
marks and more), as well as their dynamic behaviour, given
that time-course studies will reduce current data to static time
points and will open a new dimension for PEI studies.

How to visualize PEI data?

The «WashU Epigenome Browser» [91] is one of the main exam-
ples of tools to visualize and navigate PEI data (Figure 3). This
browser allows visual exploration of contact maps both as
matrices/heatmaps and as arcs, while also containing a rich
database of annotated data sets. A few other repositories that
contain chromatin interaction data include ‘GEO’ [92], ‘Array
Express’ [93], and the ‘3DGD database’ [94, 167]. Different labs
have generated their own browsers to visualize the data sets
they have produced. In this category, we find: the «Hi-C
browser» by the Ren Lab [95], and «Juicebox» from Lieberman-
Aiden’s lab [56]. WashU and Hi-C’s browsers are web-based
tools, while Juicebox is a stand-alone application. It is also pos-
sible to find libraries that allow more control to programmers.
«Circos» [96] is an increasingly popular library for circular plots,
originally written in Perl, which has versions in R, such as
‘Rcircos’ [97]. Also in R, it is possible to find libraries such as the
abovementioned «Sushi» [90].

Besides all of the abovementioned options, multiple chal-
lenges remain for PEI visualization software. More efforts are
needed regarding annotation of interacting regions, as well as

visualization of PEIs in multiple scales (short- and long-range
interactions). Circular diagrams, such as those in ‘Circos’, are
one attempt to visualize interactions happening in multiple
scales, from kbp to Mbp to inter-chromosomal, but results are
only clear for small data sets. For this reason, we argue that bet-
ter solutions are still needed.

How should interaction raw data be processed?

Post-processing of chromatin interaction data from the 3C fam-
ily of methods is an active area of research, and there are many
post-processing methodologies and software tools available,
but no acknowledged standard (see [98], or Table 1 for some
selected tools).

Post-processing of chromatin interaction data is needed for
several reasons. One of the main reasons is that chromatin is
locally dynamic and its 3D coordinates are highly variable in a
population of cells, and, therefore, the probability of contact be-
tween two loci is never zero. In 3C methods, interaction frequen-
cies have been found to decrease exponentially with increasing
distance. Therefore, meaningful interactions are detected as local
peaks over a decaying baseline of interactions [17]. In 5C meth-
ods, the entire data set is usually used to generate an estimate of
the baseline interaction frequency for each locus, and the loop
interactions are detected as peaks higher than the baseline at a
given P-value and false discovery rate [17].

Most bioinformatics efforts have been focused on developing
normalization methodologies and determination of significant
interactions of Hi-C data. The first reason is to identify and
account for the effect of the random (non-functional) polymer
looping of the DNA versus functional chromatin interactions
[99–101]. Secondly, to remove biases because of technical char-
acteristics of the experiment, such as cross-linking preference
and fragment length [102–105]. It has been stated that formalde-
hyde fixation introduces a fragment length bias for sizes
<800 bp. That is, when fragments are <800 bp, longer restriction
fragments are more likely to be cross-linked [104]. Ligation effi-
ciency has been shown to be optimal for restriction fragment
pairs of similar sizes, given that differences in size may add
some distance between fragment’s ends, leading to a decrease
of the ligation probability [102]. Finally, there are sequencing-
related biases, which are constantly being addressed through
sequencing protocol modifications [106]. Fragments with too
low or too high GC-content, as well as highly repetitive se-
quences, are under-represented among interaction reads [102].
The choice of a restriction enzyme (and, therefore, the size of
the fragments), as well as the depth of sequencing, may deter-
mine if an interaction is detected or not. Other aspects that

Table 1. Processing software for 3C-type of data

Software Authors Description

r3Cseq Thongjuea
et al., 2013 [129]

R package. It uses BAM alignment files as input, and performs aligned reads counting,
read count normalization, statistical analysis of interactions and data visualization or
data export of contacting regions

HiTC Servant, 2012 [130] R package. It allows the use of both 5C and Hi-C data and offers quality control,
normalization and visualization of heatmaps

fourSig Williams, 2014 [131] R package. Includes fragment filtering options
Basic4Cseq Walter, 2014 [132] R package. Also includes fragment filtering options, and provides more sophisticated

visualization options
My5C Lajoie, 2009 [108] (http://my5c.umassmed.edu/welcome/welcome.php)
HOMER suite Heinz, 2010 [133] (http://homer.salk.edu/homer/interactions/index.html)
Hi-Browse Paulsen, 2014 [134] (https://hyperbrowser.uio.no/3d/)
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need to be kept in mind are: (a) The measurements in a static
time-point (ignoring possible dynamic behaviours), (b) the fact
that proximity (or interaction) is not equal to biological signifi-
cance, (c) the fact that ligation probabilities are not just a func-
tion of proximity but also of reactivity, crowding and other
variables and (d) that the nature of the method only allows
detection of pairwise (and not multiple) interactions [106].

Some of the most popular pipelines developed to normalize
Hi-C data are from Yaffe and Tanay [102] and Imakaev et al.
[103]. Both methods are available as software tools, as shown in
Table 2. Ay and Noble have recently reviewed the different algo-
rithms used by several Hi-C tools, including both sequencing
and normalization issues [23]. The authors group all normal-
ization methods into explicit-factor [102], matrix balancing [56,
103, 104] and joint correction methods [83], with some software
tools providing more than one method. Ay et al. have also intro-
duced ‘Fit-Hi-C’ [107], a method to assess the statistical signifi-
cance of chromatin interactions that includes both the random
polymer looping effect and the abovementioned observed
biases in Hi-C data sets.

It is interesting to note the disagreement between ‘global’
(e.g. Jin et al. [83]) and ‘local’ methodologies (e.g. Rao et al. [56]) to
determine significant interactions. Jin et al. normalize each
observed interaction frequency against the average frequency
of interactions with similar sequential distance. In parts of
the genome, broader regions have generally high interaction
frequency with other broader regions. When normalizing
against global averages, Jin et al. may end up with several inter-
actions between bins from two such regions. Rao et al. criticize
such interactions for not being specific, and instead use a local
normalization scheme that contrasts the interaction frequency
between two bins with that of the broader local region around
the two involved bins (denoted as the neighbourhood of a pixel
in the terminology of Rao et al.). Even though Rao et al. [56]

collected an order of magnitude more interactions than all
previous Hi-C data sets combined (between 395 million and
1100 million contacts, depending on the cell and number of
biological replicates), they only call 10 000 chromatin loops
(compared with 100 000 loops in Sanyal et al., and 1 M in Jin
et al.). Such disagreements are related to the fact that we have
no means (based on 3C data only) to discern if an interaction is
functional. By taking short-range interactions into consider-
ation, we risk including a massive amount of non-functional
interactions. But, by excluding them, we risk getting a bias
towards only PEIs that are the result of discernible folding. One
can thus think that future studies must take into account func-
tional information before discarding non-atypical interactions.

The current situation of the field allows us to anticipate the
development of ‘gold standard’ data sets per cell type and time
course. A ‘gold standard’ has been called for in Hi-C analysis;
however, as no such standard exists, we await better 3D simula-
tions of chromatin [108]. Benchmark studies should also be
developed to compare the different statistical methodologies,
as well as new statistical methods that take functional informa-
tion into account.

Are chromatin interaction results reproducible?

Experimental reproducibility is an issue that has been margin-
ally addressed in the field. Rao et al. report the number of peak
annotation overlaps between a primary and a replicate Hi-C
experiment, and their results show 5403 common interactions,
with 2651 interactions unique to the primary experiment and
2081 interactions unique to the replicate [56]. Such agreement
rates are a problem common to most chromatin-related data
sets, and the most common way of addressing the issue has
been merging the data from both replicates. That clearly shows
that interaction datasets are catalogues of possible contacts in a

Table 2. Normalization pipelines for Hi-C data

Software Authors Reference originally applied Software source

Hiclib Mirny Lab Lieberman-Aiden, 2009 http://mirnylab.bitbucket.org/hiclib/
Hicpipe Tanay Lab Lieberman-Aiden, 2009 http://compgenomics.weizmann.ac.il/tanay/?page_id¼283
scell_hicpipe Tanay Lab Nagano, 2013 http://compgenomics.weizmann.ac.il/tanay/?page_id¼580
Juicebox Lieberman-Aiden Lab Rao, 2014 http://www.aidenlab.org/juicebox/

Yaffe and Tanay generated a normalization pipeline that corrects for fragment length, GC content and mappability, following a maximum likelihood optimization pro-

cedure. This method has been applied to several Hi-C studies [100, 135]; however, it does rely on prior knowledge about the abovementioned sources of bias. Imakaev

et al. developed a computationally less expensive iterative correction procedure, which has also been applied to Hi-C studies [85]. Nagano et al. have introduced a spe-

cial pipeline for their single-cell protocol [110].

Table 3. Histone modifications and variants at enhancers

Histone modification/histone variant Enzymes Main observation References

H3K4me1/2 KMT2C/2D (MLL3/4); KMT7 (SET7/9) Active, intermediate and poised enhancers [136–138]
H3K9ac KAT2A/B (GCN5/PCAF) Active enhancers [115, 139]
H3K14ac KAT2A/B (Gcn5/PCAF);

KAT3A/3B (p300/CBP); KAT6A (MYST3)
Active enhancers [139]

H3K27ac KAT3A/3B (p300/CBP) Active enhancers [5]
H3K36me3 KMT3A (SET2) Active enhancers [140]
H3K56ac KAT3A/3B (p300/CBP) Active enhancers [141]
H4K16ac KAT8 (MOF) Active enhancers [142]
H3K9me3 KMT1E (SETDB1) Poised enhancers [140]
H3K27me3 KMT6 (EZH2) Poised enhancers [140, 143]
H2A.Z/H2A.Zac KAT5 (TIP60) Poised and active enhancers [115, 144–146]
H3.3 – Poised and active enhancers [147, 148]

988 | Mora et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/17/6/980/2606430 by guest on 20 April 2024

Deleted Text: ,
Deleted Text: )
Deleted Text: s
Deleted Text: )
Deleted Text: )
Deleted Text: s
Deleted Text: )
Deleted Text: s
Deleted Text: )
Deleted Text: )
Deleted Text: ,
Deleted Text: )
Deleted Text: ``
Deleted Text: ''
Deleted Text: )
Deleted Text: ``
Deleted Text: ''
Deleted Text: )
Deleted Text: ``
Deleted Text: ''
Deleted Text: )
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: employ
Deleted Text: s
Deleted Text: )
Deleted Text: M
Deleted Text: M
Deleted Text: to
Deleted Text: k
Deleted Text: 2
Deleted Text:  very
Deleted Text: ``
Deleted Text: ''
Deleted Text: -
Deleted Text: ``
Deleted Text: ''
Deleted Text: )
Deleted Text:  in order
Deleted Text: )
http://mirnylab.bitbucket.org/hiclib/
http://compgenomics.weizmann.ac.il/tanay/?page_id=283
http://compgenomics.weizmann.ac.il/tanay/?page_id=283
http://compgenomics.weizmann.ac.il/tanay/?page_id=580
http://compgenomics.weizmann.ac.il/tanay/?page_id=580
http://www.aidenlab.org/juicebox/


population of cells that do not necessarily co-exist. Dynamic
studies of PEIs [79, 109] and single-cell protocols [110] are
needed to distinguish time-related or population-related vari-
ability from the variability derived from stochastic fluctuations
at the molecular level. Such studies would help us to improve
reproducibility of chromatin interaction maps.

Is it possible to predict PEIs?

A PEI prediction methodology is a computational procedure
that uses existing genomic data sets of specific cell types to pre-
dict PEIs of the same or a different cell type. Such an achieve-
ment would be important for at least three reasons: Firstly,
genome segmentation methods and other enhancer prediction
methodologies are producing many predicted enhancer regions,
but they lack information regarding the associated target genes
or promoters. Linking regulatory sequences to their target genes
has been recognized as one of the main current challenges in
transcriptional biology [20]. Secondly, this would help to link
disease-related single-nucleotide polymorphisms (SNPs) occur-
ring inside enhancer regions with their gene targets (an enhan-
cer mutation can affect target gene regulation) [24, 111, 112].
Thirdly, we envision the possibility of using statistical
approaches informed by biological knowledge to select relevant
PEIs from Hi-C raw data.

To identify the gene corresponding to a predicted enhancer,
the ‘nearest-promoter’ was the first method applied. Variations
of this method, such as the ‘nearest-expressed-gene’ to an
enhancer, or taking into account the limits established by insu-
lator elements [113] have been reported. These methods are es-
sentially inaccurate, as enhancers may be localized several
kilobases or even megabases away from their promoters [114].
Ernst et al. and Thurman et al. introduced the first methods try-
ing to predict PEIs based on the correlation to single epigenetic
marks [115, 116]. The method by Ernst et al. predicts PEIs using
the histone modification profile correlation, while Thurman
et al. use DHS correlation. The first method is limited to the
nearest candidate pairs within a 125 kbp distance, while the se-
cond one includes all candidate pairs within a 500 kbp distance.

Recently, more methods have appeared: The FANTOM5 con-
sortium introduced a method for finding all expression correl-
ations for all promoter–enhancer pairs in a 500 kb window [77].
The authors compared their results with the DHS correlations
of Thurman et al. [116], and concluded that transcription is a
better PEI predictor than chromatin accessibility (20.6% sup-
ported associations with CAGE expression correlation versus
4.3% with DHS). Another method is PreSTIGE [117], which
predicts PEIs by correlating cell type-specific H3K4me marks
(enhancer signals) with specific gene expression, across differ-
ent cell types. The most recent method is IM-PET [118], which
uses a Random Forest classifier that is based on four features:
enhancer–promoter activity profile correlation, TF-promoter
correlation, co-evolution of enhancer and promoter and dis-
tance between enhancer and promoter. The authors suggest
much better results than all other attempts and suggest that
PEIs have higher cell specificity than enhancers (49% of cell-
specific PEIs versus 32% of cell-specific enhancers).

A pipeline combining chromatin interaction data processing
with PEI prediction is High-throughput identification pipeline for
promoter interacting enhancer element (HIPPIE) [119]. This plat-
form starts from raw Hi-C reads, and then identifies high-confi-
dence interacting fragments after mapping and evaluating
polymerase chain reaction artefacts, restriction fragment size
and GC-content. After that, HIPPIE predicts enhancers based on

DHS, H3K4me1 and H3K27ac marks, and the low levels of
H3K4me3 and H3K27me3, and predicts PEIs based on promoter–
enhancer distance only. PEI prediction is the ultimate frontier of
bioinformatics in the field of epigenetics. Methods that can be
easily applied to different cell types and have a high predictive
capacity are still needed.

PEIs and disease

Chromatin interactions may offer an explanation to the effects
of disease-associated non-coding variation [24, 114]. It is known
that genomic variation in non-coding genomic regions (espe-
cially in enhancers) is linked to a number of diseases. Young
and co-workers have postulated that most disease-related SNPs
are found inside large clusters of enhancers known as ‘super-
enhancers’ (see also Box 2) [120]. However, the mechanisms
that connect genome-wide association study (GWAS)-identified
loci to their target genes and pathways have not been easy to
explain until recent years, with the advent of PEI studies and
the construction of chromatin interaction networks.

In Figure 3, we illustrate two examples where chromatin
interactions have been used to explain the link between non-
coding SNPs and disease [121, 122]. Here, we have used publicly
available Hi-C data from human foetal lung fibroblasts [85] and
the enhancer marks H3K4me3 and H3K27ac in different parts of
the human brain and in foetal lung fibroblasts [123]. Davison
et al. [121] reported a PEI-mediated mechanism for Type-1-
Diabetes and Multiple Sclerosis and used it to predict a new dis-
ease candidate gene. The CLEC16A has been traditionally re-
ported as the main candidate for several autoimmune diseases
associated to the 16p13 region, such as Type-1-Diabetes,
Systemic Lupus Erythematous and Multiple Sclerosis, because
of the high number of disease-associated SNPs in intron 19.
However, the authors show that this region in CLEC16A is en-
riched in enhancer marks, and they used 3C to map an inter-
action with the DEXI gene, whose function in autoimmune
disease was not previously described. The combination of
GWAS and 3C technologies allowed the authors to suggest DEXI
as an autoimmune disease candidate gene, as well as provide a
disease mechanism where the allelic variant disrupts a PEI be-
tween an enhancer in the intron of CLEC16A and DEXI. Using
publicly available human data sets [85], we were able to visually
identify enhancer marks in the region associated with the
Type-1-Diabetes SNP (rs1208716) in the intron of CLEC16A in
foetal lung fibroblasts (Figure 3A). One of the cell types that
Davison et al. used for their 3C study was lung epithelial cells
because DEXI is expressed in these cells. Therefore, we used
publicly available Hi-C data in human foetal lung fibroblasts to
identify interactions between CLEC16A and DEXI [85]. However,
this data set has a limited resolution, and we could only show
looping of intron 19 of CLEC16A to the first intron of DEXI gene,
and not the promoter (Figure 3A). Recently, PEIs have also been
proposed as an explanatory mechanism for obesity. Smemo
et al. [122] found that a region rich in obesity-associated SNPs in
the first intron of the FTO gene (which were also rich in enhan-
cer-associated chromatin marks) displays a long-range inter-
action with the homeobox gene IRX3 in both human and
mouse. IRX3 encodes for a TF highly expressed in the human
brain, heart and lung and is important for control of body mass
and composition. Based on their finding, the authors suggested
a mechanism where allelic variants in the enhancer inside
FTO’s intron may disrupt looping with the IRX3 gene and affect
IRX3 expression, and not the expression of FTO [122]. Inspecting
the publicly available human data sets [85, 123], we were able to
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visualize the findings of Nóbrega and co-workers. The region
with Body Mass Index-associated SNPs in the intron of FTO
shows looping with the IRX3 gene in foetal lung fibroblasts and
this region is enriched in enhancer marks in different brain tis-
sues and lung fibroblasts (Figure 3B).

Both studies described here illustrate the power of combining
3C technology with GWAS studies in identifying candidate genes
involved in disease. Several other studies linking PEI disruption to
diseases have been published [124–127], including a few reviews.
Horan and Ballard reviewed PEI disruptions in diseases including
prostate, breast and colorectal cancers, facioscapulohumeral
muscular dystrophy, neurological disorder and Rett syndrome
[111]. A more recent review includes references to metabolic syn-
drome, coronary artery disease and human development [112]. A
resource that collects and annotates genetic variants using
chromosome conformation data is GWAS3D [128].

This review raises several different bioinformatics chal-
lenges related to PEI analysis. We anticipate the development of
new bioinformatics tools, ‘gold standards’, data processing
methods and prediction methodologies that will have an im-
portant impact on PEIs in basic and biomedical research.
Implementation of these will advance our understanding of the
role of chromatin interactions in gene regulation, give us a bet-
ter insight into PEIs across cell types, tissues and in different
model organisms (at different time points or at different devel-
opmental stages) and provide mechanistic understanding of
non-coding variation in disease.

Key Points

• Our understanding of the chromatin interaction net-
work is becoming more complex. Distinguishing PEIs
from all other chromatin interactions is a first challenge
that demands both accurate enhancer detection meth-
ods and comprehensive genome annotation efforts.

• We present five models of chromatin looping. Whether
transcriptional regulation is the cause or consequence
of chromatin looping is not known. These models dir-
ectly influence the bioinformatics approaches to PEI
visualization, data processing and prediction, and point
to the necessity of modelling of spatially co-localized
groups of genomic regions (and not only linear se-
quences) to understand transcriptional regulation.

• Several chromatin interaction detection technologies
are currently in use and under continuous develop-
ment. These methods have made it possible to study
genome-wide chromatin organization; however, they
have limitations and call for use and development of
alternative methods such as live-imaging studies in
single cells. Generation of new data processing meth-
odologies for 3C methods are needed to resolve dis-
crepancies observed between FISH and 3C.

• There have been advances in PEI data representation,
such as the creation of multiple file formats and visu-
alization tools. We call for an agreement on standards.
The existing tools also face some practical challenges,
such as the increase in data resolution and dealing
with the combination of long-range and short-range
interactions.

• PEI prediction is the ultimate frontier of bioinformatics
in the fields of transcription and epigenetics. A few
methods are available, but high predictive capacity is
needed. Future methods should go beyond chromatin

accessibility and expression predictors and make use
of chromatin organization. Such methods would help
us to achieve another important goal, which is the
identification of long-range functional targets of dis-
ease-related SNPs.
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