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Abstract

ChIP-seq has become a widely adopted genomic assay in recent years to determine binding sites for transcription factors or
enrichments for specific histone modifications. Beside detection of enriched or bound regions, an important question is to
determine differences between conditions. While this is a common analysis for gene expression, for which a large number
of computational approaches have been validated, the same question for ChIP-seq is particularly challenging owing to the
complexity of ChIP-seq data in terms of noisiness and variability. Many different tools have been developed and published
in recent years. However, a comprehensive comparison and review of these tools is still missing. Here, we have reviewed
14 tools, which have been developed to determine differential enrichment between two conditions. They differ in their
algorithmic setups, and also in the range of applicability. Hence, we have benchmarked these tools on real data sets for
transcription factors and histone modifications, as well as on simulated data sets to quantitatively evaluate their perform-
ance. Overall, there is a great variety in the type of signal detected by these tools with a surprisingly low level of agreement.
Depending on the type of analysis performed, the choice of method will crucially impact the outcome.
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Introduction

High-throughput sequencing (HTS) has become a standard
method in genomics research and has almost completely super-
seded array-based technologies, owing to the ever-decreasing
costs and the variety of different assays that are based on short
read sequencing. Most array-based assays have now a counter-
part based on HTS, with a generally improved dynamic range in
the signal. Genome sequence (whole genome or exome), DNA-
methylation (whole genome bisulfite sequencing), gene expres-
sion (RNA-seq, CAGE-seq), chromatin accessibility (DNAse1-seq,
ATAC-seq, FAIRE-seq) or chromatin interaction (ChIP-seq) all

belong to the standard repertoire of genomic studies, and follow
standardized protocols. However, the broad availability of these
approaches should not hide the fact that they are still highly
complex, requiring a number of experimental steps that can
lead to considerable differences in the readout for a same assay
performed by different groups [1, 2]. Large-scale consortia such
as ENCODE or Roadmap, Epigenomics, which rely on different
sequencing centers for the data collection, have faced the prob-
lem of harmonizing the results obtained by different centers,
which require systematic bias correction before data integration
can be achieved in a meaningful way. Clearly, the more complex
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the experimental setup is, the more it is subject to biases, which
can be introduced in the different steps of the experimental
protocol or the downstream analysis [3, 4]. Among the
approaches listed previously, those based on immunoprecipita-
tion are the more complex ones, as the antibody-based precipi-
tation usually represents a critical step, and leads to variations
in the precipitation efficiency, the cross-reaction probability,
conditioned by the quality of the antibody. Hence, the reprodu-
cibility of the assays is often limited, especially in cases with
additional constraints, for example low input material. The
amount of noise in the data can be substantial: a standard
measure of the signal-to-noise ratio is the FRiP (fraction of reads
in peaks), which measures how many sequencing reads are
located in enriched regions, compared with the total amount
[1]. In the ENCODE project, this ratio was in the range of a few
percent, indicating that the amount of noise is>90%. To detect
consistent signal between replicates, special statistical methods
have been developed such as the Irreproducible Discovery Rate
[5], which allow to detect consistent signal between replicates.

Detecting differential gene expression between several condi-
tions is one of the most common analysis steps since the advent
of genome-wide expression measurements based on micro-
arrays, and a considerable literature has been dedicated to the
development of solid statistical procedures. Expression measure-
ments based on HTS has also lead to the development of new
tools or the adjustment of existing procedures. Differential ana-
lysis are however not restricted to gene expression but can in
principle be extended to any quantitative assay, such as the
measurement of DNA methylation levels or the enrichment of
ChIP signal. Accordingly, many tools are available either to detect
differential gene expression or to delimit differentially methy-
lated regions (DMRs). Similarly, a number of tools and methods
have been published to detect differences in ChIP signal between
several conditions [6–19]. If the underlying question is similar for
ChIP-seq experiments (where are the regions showing significant
differential signal between two conditions?), there are a number
of particularities that make this simple question particularly
challenging in the case of ChIP-seq data sets, as compared with
RNA-seq or whole-genome bisulfite sequencing. In the case of
RNA-seq, most of the signal is concentrated in regions that are ei-
ther annotated as genes or easily recognized as enriched regions,
representing unannotated transcripts. Hence, the search space
for differential signal is well defined. In the case of differential
DNA methylation, the search space is extended to the complete
genome, as CpGs occur virtually everywhere. However, the signal
range is constrained to a finite interval (between 0% and 100%
methylation) and the amount of noise is low, two properties
which make the search for DMRs a tractable problem. In the case
of ChIP-seq, we are facing multiple challenges: (i) the search
space is not limited to a particular region of the genome, as dif-
ferential binding can occur everywhere; this implies that regions
of interest, in which differential signal should be looked for, need
to be defined first; (ii) the range of the signal is not constrained to
a finite interval and requires transformation such that standard
statistical tools can be applied; (iii) the amount of noise in consid-
erable, making variations in the signal challenging to detect, es-
pecially when these differences are subtle, and (iv) the properties
of the enriched regions (in particular their length) differ substan-
tially depending on the protein or epigenetic modification tar-
geted by the immunoprecipitation.

In this article, we have performed a comprehensive compari-
son of a large number of tools, which have been published to de-
tect differential signals in ChIP-seq assays. Our criterion for tool
selection was the availability of a working software that could be

implemented without the need for extensive efforts for porting
the code. These tools differ in many ways, and this diversity re-
flects the diverse challenges listed previously: some require pre-
liminary detection of enriched regions by external peak-calling
algorithms, while others implement their own detection method
or work using sliding windows; others differ in the underlying
statistical modeling of the signal distribution, based either on
Poisson distribution or on a more flexible negative binomial distri-
bution. Finally, some tools work in the absence of replicates for
each condition, and others require replicates to provide differen-
tial analysis. Importantly, some tools have been specifically de-
signed for particular ChIP-seq data, such as histone modifications
or transcription factor (TF) binding. We have indicated this in the
tool description (Supplementary Table S1); however, we have tried
to apply these tools to all types of data sets to verify their behav-
ior. For the evaluation, and given the absence of a gold standard
for differential enrichment in ChIP signal, we have adopted a mul-
tistep strategy. First, the tools have been compared using various
published ChIP-seq data sets, to compare global statistics on the
sets of differential regions (DR) detect by each tool, such as the
number of DR, their length distribution and the pairwise overlap
between the outputs. We have made the distinction between tools
that do not require replicates for the definition of DR (single-repli-
cate) and those that only work when replicates are available
(multi-replicates), and performed all analysis for both categories
separately. To estimate rates of true positives and false positives,
we have performed a simulation of synthetic data sets, but made
sure that these simulated data sets are as close as possible to real
data sets and represent realistic and fair test sets. Using these
data sets, we have compared the sensitivity and specificity of
each tool. In particular, we have investigated the threshold in dif-
ferential signal that is required for each tool to start detecting a
significant difference. Finally, we have conducted a functional an-
notation of the sets of DR and related the DR to differentially ex-
pressed genes (DEG). This last analysis is meant to address typical
biological questions that are mostly focused at difference in gene
expression driven by differential enrichments.

Overall, we have seen considerable differences between the
tools, which can be traced back to the underlying statistical as-
sumptions or the way the initial search space is defined, either
based on peak calling or using a windowing approach.
Researchers that are interested in finding DR in their study
should be aware of these differences, and should adapt the
choice of the tool to their particular experimental question. We
believe that our extensive study can help in making a motivated
choice and avoid obvious pitfalls.

Material and methods
Tools

We have selected 14 available tools for differential peak calling,
based on a variety of algorithmic approaches [6–19]. A detailed de-
scription of each tool is given in Supplementary Text 1, whereas
the parameters used are described in Supplementary Table S1.

Data set sources

A summary of the data sets used and statistics on the number
of reads is given in Supplementary Table S2.

Transcription factor data
We obtained FoxA1 ChIP-seq data from a previously pub-
lished study for two experimental conditions including estradiol
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(E2)- and vehicle (Veh)-treated MCF7 cells each in two biological
replicates (GEO: GSE59530). Additionally, expression data as al-
ready aligned reads for both conditions derived from global run-
on sequencing (GRO-seq) were taken from this study
(GEO:GSE59531) [20].

Sharp histone post translational modification (PTM) data
Two biological replicates of H3K27ac ChIP-seq were retrieved
from a study that differentiates embryonic stem cells (hESC-H1)
to mesenchymal stem cells (GEO: GSE16256) [21].

Broad histone PTM data
Moreover, we collected data sets in two biological replicates for
H3K36me3 in an MMSET (multiple myeloma SET domain) over-
expression (TKO) against physiological expression (NTKO) setup
in myeloma cells (GEO: GSE57632) [22].

Simulated sharp signal data
As an example of data with localized signal giving rise to sharp
peaks, we used the merged replicates of the previously
described FoxA1 ChIP in E2-treated MCF7 cells as a source for
our simulation of a sharp signal data set (GEO: GSE59530) [20].

Simulated broad signal data
Moreover, two biological replicates of H3K36me3 in MCF7 cells
were downloaded and pooled, which was used as source for the
simulation of a broad signal data set (GEO: GSE31755) [22].

Input data for background simulation
As a control data set, we used DNA, which is not precipitated
(‘input DNA’), which represents the standard control in ChIP-
seq experiments. Five input experiments from different MCF7
studies were collected and further used to generate an additive
background model (GEO: GSM1059389, GSM1089816,
GSM1143667, GSM1241757 and GSM1383864). We performed a
genome-wide correlation of the input signals to verify their sim-
ilarities and pooled them together as source for our background
signal simulation. Data simulation was then performed as
described in the section ‘Simulation of a differential dataset’.

ChIP-seq preprocessing and analysis
The data sets were downloaded as sra files from the Sequence Read
Archive (SRA) and converted to fastq with the SRA Toolkit. Reads
were aligned to the hg19 reference genome using BWA aln with de-
fault settings [23]. Subsequently, duplicated reads and reads with
bad mapping quality (-q 1) were removed from alignments.

We performed peak calling on all ChIP-seq data sets using
MACS2 with additional parameters according to underlying sig-
nal type as followed: for sharp peaks ‘-g hs -q 0.1 –call-summits’
and for broad peaks ‘-g hs -q 0.1 –broad’ [24]. Resulting peak sets
were used as input for tools that require peaks/regions as input
for differential enrichment analysis.

Differential peak calling
We performed differential peak calling with each tool according
to the settings recommended by the developers of the tools or,
if not indicated explicitly, with default settings as listed in
Supplementary Table S1.

Moreover, tools were classified into two categories according
to their ability to use biological replicates or only single samples
(Supplementary Table S1).

For the tools that do not consider replicates, the replicates of
each ChIP-seq experiment were pooled to create a single data set
for each condition. Because each of these tools calculates different

significant measures, a general significant threshold for all of
them could not be defined (Supplementary Table S1). However, for
tools using an false-discovery rate (FDR) or P-value measure, we
decided to set the thresholds as FDR�¼ 0.01 or P-value�¼ 0.05.

GRO-seq analysis
We obtained already aligned GRO-seq reads for the FoxA1 data
set as an input for groHMM, which is an R pipeline for the ana-
lysis of GRO-seq data [25]. Differential GRO-seq analysis was
performed according to the manual of groHMM using edgeR
with a significance threshold of P�¼ 0.05 [25, 26]. Resulting list
of DEGs between E2- and Veh-treated MCF7 cells was used for
further integration with differential peak data sets.

DEG enrichment analysis
Lists of DEGs for the H3K27ac and H3K36me3 data sets were
taken from the corresponding studies to integrate them with
computed differential peak sets. For FoxA1, we used the results
of the GRO-seq analysis described above. Additionally, a list of
house-keeping genes (HKGs) was obtained (http://www.wikicell.
org/index.php/HK_Gene) and used as a control to compare en-
richment of DEGs with HKGs.

First, DR were ranked for each tool according to the associ-
ated significance measure, and the top 1000 unique nearby
genes assigned to DR were kept for this analysis. We performed
a cumulative recovery analysis of DEGs as well as HKGs in each
gene ranking. The resulting DEG (respectively HKG) ranks were
used to compute the area under curve (AUC) for each tool.
Moreover, a background model was computed for each ranking
by randomly sampling 10,000 times a new gene ranking from all
human genes (UCSC Known Gene Annotation) followed by the
same cumulative recovery analysis. The resulting background
AUC distributions were used to compute the normalized enrich-
ment score (NES) with following formula:

NES ¼
AUCraw �AUCbackground

rbackground
;

where AUCbackground corresponds to the mean and to
rbackgroundthe standard deviation of the background model.

In addition, we introduced for each ChIP-seq data set an-
other control experiment: we ranked all genes using the cover-
age fold-change within gene bodies (H3K36me3) and promoters
(FoxA1 / H3K27Ac). We used these rankings to perform the
same recovery analysis.

Gene ontology enrichment analysis

As large variations in terms of ‘number of differential peaks’
were observable for all data sets, we decided to use a ‘gene cen-
tric’ approach, focusing on the top 1000 genes that were close to
a differential region. Therefore, each peak was annotated with
its nearest gene using the R-package ChIPseeker [27]. We ranked
these genes according to corresponding peak significance
measures and obtained the top 1000 unique genes for each dif-
ferential peak set. Regions 61.5 kb around the consensus tran-
scription start side (TSS) were used as input for the annotation
tool GREAT with the setting ’single nearest gene’ [28].

As the transcription factors or histone modifications studied
here are considered to be positively correlated with gene ex-
pression, we used DEGs as a positive control. Therefore, re-
gions 61.5 kb around the consensus TSS of these genes were
used as an input for a GREAT analysis with the setting ‘single
nearest gene’.
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Differential peak calling data presentation

Signal tracks were generated for each replicate using deepTools
[29]. For sharp signal data, scaling factors were estimated with
the signal extraction scaling (SES) option, and further log2 ratios
of ChIP over input signal were computed [30]. Broad signal data
were scaled according to the total number of reads and again
log2 ratios were calculated.

Additionally, all differential peaks can be displayed in a sin-
gle genome-wide coverage track, which was generated using
the bedtools genomecov function [31].

All differential peak sets, signal tracks and genome-wide
coverage tracks can be displayed using following UCSC genome
browser trackhubs:

http://goo.gl/5WI5w3 (FoxA1); http://goo.gl/HyfooK (H3K36me3);
http://goo.gl/5uYXsn (H3K27ac).

Simulation of a differential data sets

To simulate a realistic ‘gold standard’ data set for differential
ChIP enrichment, we started from real ChIP data sets: one data
set targeting FoxA1, as an example of a data set with sharp sig-
nal, and a H3K36me3 data set as an example of a broad enrich-
ment. In each case (FoxA1 and H3K36me3), we simulated two
‘treatment’ data sets (T1 and T2) representing the reference con-
dition and the comparison condition, as well as ‘control’ data
sets (C1 and C2), corresponding to input. The treatment data sets
(T) were obtained by merging regions corresponding to real sig-
nal (S) with background noise (B) (hence, T¼ SþB) The signal
data set was obtained as follows: we performed peak calling
using MACS2, using the provided input data set as a control. We
selected the top 20,000 peaks identified by the peak caller, as
they are most likely to represent truly enriched regions. In a
first step, only the reads located in these regions were con-
sidered, and represent the reference signal data set (S1). To
simulate the second condition, these peak regions were split
into two groups: 10,000 peaks were kept as is (S2

0), and represent
nondifferential peaks. The remaining 10,000 peaks were divided
into 10 groups of 1000 peaks each, which were downsampled by
random read sampling by 10%, 20%, etc. (S2

10,S2
20, . . . ). These

represent sets of differential peaks in which the level of differ-
ential enrichment is variable. Next, we simulated realistic back-
ground signal B: several public input data sets for the MCF7 cell
line were downloaded, aligned and compared. The input data
set showing the highest correlation with the original input was
used to sample reads, until the library size of the real ChIP-seq
experiment was reached. If not enough reads were available in
one input, it was merged with a second similar one. This is
done twice, to simulate a background for the reference and the
second condition (B1 and B2). In summary, our two data sets
are composed of T1¼ S1þB1 and T2¼ S2þB2, where
S2¼ S2

0þRi¼ 10! 100 S2
i. Comparing these two data sets should

ideally yield 10,000 differential peaks, which represents our gold
standard.

The Bioconductor packages IRanges and GenomicRanges [32]
were used to detect overlapping peak regions. For the simulated
data set, a GenomicRanges object comprising all true differential
binding events (n¼ 10,000) was implemented as a reference to
find overlaps with DR called by the respective tools. We con-
sidered a called DR to be a true event if at least 25% of its length
overlapped with a real DR.

Using this data set, we computed two different measures to
infer sensitivity and specificity of the analyzed tools. For differ-
ential ChIP-seq analysis, the number of negatives outnumbers

by far the number of positives, as most of the genome is not dif-
ferentially enriched. Hence, the specificity is not a good meas-
ure, as all tools will have artificially high specificity, given the
large number of true negatives. We therefore prefer using a
‘precision’-like measure. To take into account the fact that
some tools call large DR, we defined the ‘Jaccard index preci-

sion’ as 1
N

Xi¼N

i¼1

jAi \ Bj ið Þj
jAi [ Bj ið Þj

as a more stringent precision measure,

penalizing imprecise peak calling (either over- or under-calling).
Here, Ai represents a DR called by a tool and Bj(i) represents the
true DR that intersects Ai. The norm is meant as the genomic
length of the intersection or the union, and N indicates the
number of DR called by the tool considered. We define the recall
as the proportion of true DR that intersects a called DR with a
25% overlap.

Results
Comparison using real data sets

We applied the single and multi-replicates pipelines to se-
lected data sets, using the default or recommended settings
for the tools (see Supplementary Table S1 for methods and
parameters used). As mentioned in the Introduction, a major
distinction can be made between tools that require a prede-
fined set of regions of interest (for example, peaks) and those
that implement an internal procedure to define these regions
of interest. We call the first set of tools EROI (for external re-
gions of interest), and the second IROI (for internal regions of
interest), and distinguish these two groups (in addition to
the requirement for replicates or not) in the subsequent
analysis.

Our first question was whether the tools would report con-
sistent sets of differential peaks.

For both types of ChIP-seq data sets (sharp TF binding and
broad histone modification enrichment), we observed consid-
erable differences in the number of reported DR (Figure 1A and
B). The sets of DR ranged from no detected differential peak
(QChIPat) to about 150,000 DR for ODIN-poisson for the FoxA1
data set. Five of the methods had a relatively consistent num-
ber of DR, in the range of 25,000–35,000 peaks. Among the tools
that were given the same set of predetermined regions using
an external peak caller (MACS2 in this case), the number of DR
does not show particular consistency, with MAnorm having
about 23,000 DR and QChIPat only a handful, indicating that
the number of input regions is not the primary determinant of
the number of detected DR. Obviously, the number of DR de-
pends on the choice of parameters, which we have chosen in a
consistent way across tools. We were interested in determin-
ing how sensitive the number of peaks is on this choice.
Hence, we have varied the threshold on the P-value or FDR,
and recorded the number of DR (Figures 1C and 2C).
Surprisingly, the IROI tools from the single replicate pipeline
show a step-like behavior, with a pronounced jump at small P-
values, and a quasi saturation beyond this threshold. Other
tools show a more progressive increase. Hence, the choice of
P-value threshold is crucial for the first class of tools, as this
number can vary abruptly by several orders of magnitude. As
for the tools with a small number of DR (MMDiff, DBChIP), this
number indeed increases when relaxing the threshold, but re-
mains at a low level, much lower than other tools from the
same class, indicating an intrinsic difference in the internal
statistical procedure to call DR.
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Whereas the total number of DR is subject to the choice of
parameters, we expected that, beyond the amount of DR, the
proportion in each condition should be consistent between the
tools, showing, for example, systematically more DR in one dir-
ection. To our surprise, there was a lack of consistency in this
respect, with four tools predicting a higher number of DR en-
riched in the vehicle condition compared with the estrogen-
treated condition, while five tools predicted more DR enriched
in the estrogen-treated condition. The naive approach based on
the number of unique peaks predicts indeed more specific
peaks in the treated condition, and hence, we tend to have
greater confidence in the prediction of the five tools that con-
firm this tendency. Additionally, this is in accordance with the
biological expectation, as it was previously reported that FoxA1
shows increased binding on estrogen treatment [20].

The number of DR is related to the size of the reported re-
gions: some tools might call a large number of small regions,
while others would aggregate them into larger domains. Here
also, we observe huge differences, related to the underlying
method (Figure 1A and B, lower panel). Some tools report small
regions, while others like diffReps or SICER identify large re-
gions of up to 2 kb as being differentially enriched. While this
might be realistic for histone modifications, it appears to be a
clear overestimation of the real size in the case of TFs
(Figure 1C). In particular, this overestimation implies that any

subsequent analysis of enriched DNA motifs in the DR will be
obscured by noise. Tools based on fixed windows approaches
(diffReps, SICER, . . . ) generally call broader regions, compared
with the tools based on an initial peak calling step.

The tools included in the multi-replicate pipeline consist-
ently report a much lower number of DR. diffReps, which can
handle either single or multiple replicates, reports less than half
of the DR in the multiple replicates setting, compared with the
single replicate in which the data sets were pooled. Hence, the
tools including the replicates appear to be much more conserva-
tive, at least with the default parameters we applied.
Interestingly, all tools from the multi-replicate pipeline agree in
predicting more peaks enriched in the estrogen-treated
condition.

Despite the difference in the type of regions, the same obser-
vations hold true for the data sets for H3K36me3 (Figure 2), a
histone modification characterized by broad domains of enrich-
ment, especially in the gene body of transcribed genes, as well
as for H3K27ac (Supplementary Figure S1), a mark associated
with active regulatory regions. The length distribution is vari-
able among tools, and for H3K36me3 does not reflect the size
distribution of transcripts, as could have been anticipated for
this histone mark. Figure 2D shows how different the lengths of
DR are on the example of the HLX gene, indicating that the dif-
ferential signal does not cover the whole transcript. The

Figure 1. Overview of the DR called by the single and multi-replicate pipelines for the FoxA1 data set: (A) Number (barplots) and size distribution (violin plots) of de-

tected DR in each condition and size distribution for the single replicate pipeline. (B) Same as shown in A for the multi-replicate pipeline. (C) Plots showing the number

of DR returned by each method as a function of the P-value threshold (plain lines) or FDR (dotted lines). (D) An example of a region, highlighting the difference between

the different tools in terms of length of DR. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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proportion of DR between the two conditions is not consistent
either for both histone data sets, with some tools predicting
more DR in one direction while other predict the opposite
(Figure 2, Supplementary Figure S1). PePr, for example, predicts
a 12-fold higher number of peaks enriched in the NTKO condi-
tion, while diffBind predicts an 8-fold enrichment in the other
direction.

Unlike the FoxA1 data set, in the H3K36me3 data set, the
tools in the replicate pipeline do not agree regarding the num-
ber of enriched peaks in each condition. Both IROI tools (dif-
freps-nb and PePr) do agree, while the discrepancy is greater
among the EROI tools, despite the fact that they were supplied
the same set of regions. Surprisingly, the three algorithms im-
plemented in diffBind yield contradictory results, which might
be related to the different normalization approaches used by
DESeq and edgeR. They do, however, agree for the H3K27ac data
set, indicating that the broad signal of H3K36me3 enrichment
represents a particular challenge to these tools.

Next, we asked to what extent the sets of DR were overlap-
ping between tools. Given the broad range of DR sizes between
tools described previously, it is not obvious to determine
whether two peaks agree. Instead, we considered the genomic
range covered by the peak sets of each algorithm.

We first determined the genomic regions covered by the
union of all DR from all tools (differential genomic loci or DGL),
and determined the coverage of these regions, i.e. the propor-
tion that is covered by peaks from n tools. For FoxA1, 71% of the
regions that have been called as differential by any tool arise
from one single tool (Figure 3A). We call these regions ‘private
DR’, as they are specific to one single tool. Less than 14% of the

total DGL is covered by two or more tools. These proportions are
more or less consistent between the data sets, with between
71% and 80% of the DGL being private.

Next, we wanted to determine whether a tool has a propen-
sity to call private DR, or rather has a higher agreement with
other tools. We therefore determined what proportion of the
DGL of a given tool has coverage n (Figure 3B and D). We expect
that tools that call many more DR than others will have a ten-
dency to call more private peaks. Hence, we ordered the tools
according to the size of the DGL. As anticipated, we observed
that the tools with the largest DGL tend to call more private DR
(e.g. for PePr, 41.6% of the DGL are specific to this tool). ODIN-
binom calls few private DR, and shows a good agreement with
other tools. On the other hand, more than two-thirds of the DR
called by SICER on the FoxA1 Vehicle data set are private DR,
which is related to the large size of the regions, and indicates
that the fixed windows settings of SICER, even using parameters
indicated for sharp transcription factors, are not adapted to de-
tect accurately small-scale variations.

As a conclusion, we observe striking differences in the num-
ber and sizes of DR detected by the different tools, and inconsis-
tencies in the direction of the differential enrichment. Tools
based on multiple replicates call less DR, which seems to indi-
cate that the proportion of false positives might be lower, how-
ever, possibly at the expense of the sensitivity. Also, these tools
show a more progressive increase in the number of DR when
relaxing the threshold, compared with the single-replicate tools,
which have a sharp increase followed by a saturation. For data
sets with broader signal, we observe a clear difference between
tools calling a large number of small peaks (e.g. ODIN), and

Figure 2. Same as Figure 1 for the H3K36me3 data set. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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Figure 3. Comparison of the sets of DR between tools for the FoxA1 E2 treatment condition (A) and H3K36me3 NTKO data sets (B). We consider the union of all regions

determined as being differential by any of the tools, and determine which proportion is called by 1,2, . . . tools (upper barplot). For each tool, we determine which pro-

portion of the differential genomic locus (DGL) is called by this tool alone, or corresponds to regions called by several tools (heatmap). We indicate the total size of the

DGL as a barplot on the right. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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others that aggregate these into broader domains (e.g. RSEG or
SICER), which better reflects the true signal.

Comparison using simulated data sets

As no golden standard is available apart from a limited number
of qPCR-validated regions, no assessment of the rate of true/
false positives can be made using real data sets. Hence, we
simulated differential data sets. Several other studies have ad-
dressed the question of simulating ChIP-seq data sets [33, 34].
These procedures have focused on simulating ChIP-seq data
sets for transcription factors only, and they rely on a theoretical
statistical model to describe the expected distribution of reads
from a ChIP-seq experiment. To avoid biasing the benchmark
toward one or the other tool, our simulation does no rely on a
particular theoretical model of read distribution. Instead, we
used real data sets as a basis for this simulation, and reasoned
that the best ranking peaks identified by MACS2 most probably
represent true binding/enriched regions. We therefore con-
sidered the 20,000 best ranking peaks, of which we downscaled
10,000 in a stepwise manner, while maintaining a set of 10,000
nondifferential binding events (see ‘Methods’ section). These
true binding events were merged with real input data sets, to
ensure that no binding event occurs outside of the selected re-
gions, while providing a realistic background (Supplementary
Figures S2 and S3). Hence, we can evaluate for each tool how
many true/false positives/negatives have been detected.

In the ideal case, the tools should detect 10,000 DR. For the
single replicate pipeline, ODIN-binom and SICER returned the
largest number of DR for the FoxA1 simulated data set
(Figure 4A). Given that ODIN outnumbered by far the other tools
in the number of DR detected in the real FoxA1 data set, it is likely
that the high recall rate of ODIN is at the expense of a high num-
ber of false positives. Indeed, both versions of ODIN had an im-
portant proportion of false positives. Both tools called>300,000
DR, of which more than 95% are false positives. We believe that
the HMM approach taken by ODIN renders it extremely sensitive
to small fluctuations in the background, hence leading to many
false-positive hits. On the other end of the scale, QChIPAT only
returned a limited number of DR. As expected, most tools were
able to detect at least partially the strongest differential peaks
(100% down-sampling). HOMER only detected DR, which were
down-sampled by�80%. This is likely owing to the additional fil-
tering parameter implemented by HOMER, which requires a min-
imum fold-change (by default 4) in addition to a P-value cutoff to
call differential peaks.

For the multi-replicate pipeline, the ranking in the number
of detected DR follows what has been observed in the real data
set, with PePr detecting the largest number of regions, of which
most are true positives, with a small fraction of false positives
(Figure 4B). The different variants of the diffBind tool detected
around 30% of the true DR, with no false positives, while all
other tools had a high proportion of false negatives. This con-
firms our assumption of the first section, that the much lower
number of DR from the tools in the replicate pipeline comes at
the expense of a much reduced sensitivity. Considering the
H3K36me3 simulation, the overall number of detected DR
agreed with the real data set (Figures 4C, D and 2), with ODIN-
poisson showing the highest number of regions, followed by the
two variants of diffReps. As expected previously, this comes at
the expense of a high proportion of false positives, at least with
our parameter settings. On the other hand, RSEG and SICER
with the various settings show excellent performances with a
high recall rate and a limited number of false positives. In the

multi-replicate pipeline, the tools call a much lower number of
peaks, corresponding to a high rate of false negatives, with two
exceptions: diffReps-nb performs well on this simulation with a
decent recall, whereas PePr calls many false positives.

As the number of regions returned by each tool depends on
the parameter settings, we decided to compare the precision
and recall of each tool at various stringency levels: for each tool,
we selected the top 10, 50, 100, 250, 500, 750, 1000, 1500, 2000,
3000, 5000, 10,000 and all peaks, and computed the recall (i.e.
the proportion of true differential peaks detected) and an
adapted version of the precision, for which we computed the
proportion of the total length of predicted DR that coincides
with a true differential region. The rational of this Jaccard index
(abbreviated JI in the following) is to avoid providing a biased
advantage to those tools that tend to call large regions, which
automatically increases the probability to hit a true differential
region. For the single replicate tools on the simulated FoxA1
data set, we see that ODIN shows a good overall recall of above
75% when taking into account all peaks, but a low JI of 25%
(Figure 5A). The best performing approach appears to be the
naive approach based on the set of unique peaks between the
two conditions. However, this results from a bias of our ap-
proach, which used MACS2 to define the initial set of 20,000
binding events, and used MACS2 again to determine the sets of
peaks in both conditions in the simulated data set, hence giving
an obvious advantage to this approach. Overall, SICER and
MAnorm show a good trade-off between recall and JI; however,
MAnorm also relies on MACS2 peaks and hence has an advan-
tage in this simulation. Strikingly, most tools show a rapid drop
in the JI with increasing sets of DR, indicating that even tools
with a limited number of DR tend to overcall DR. The difference
is striking for the multi-replicate pipeline (Figure 5B), where
diffBind shows a perfect precision of 100% up to 2000 DR, before
dropping as more peaks are included. Together with PePr, these
are the only tools that achieve decent performance, and a rela-
tively stable precision rate.

The overall performances are better on the H3K36me3 data
set (Figure 5C and D), with a high recall rate here and a reason-
able JI. The higher average values of JI comes from the fact that
the simulated regions are larger, and hence, they intersect a
higher proportion of the predicted DR. Note that despite the
higher number of false positives in PePr, the final JI is similar be-
tween diffReps-nb and PePr, when considering all DR, whereas
PePr has a much higher JI when considering only the top 5000
peaks. This indicates that the false-positive peaks called by PePr
are among the lower-ranking peaks, while the top peaks contain
a high proportion of true positives.

In summary, our analysis on simulated data sets confirms
that (1) the replicate tools have a higher rate of false negatives,
but (2) fewer false positives, and that (3) most tool seem to per-
form better on the broad histone mark than on the sharp TF
binding peaks.

Functional annotation

When comparing two biological conditions, one often aims at
relating the observed changes to genes to obtain a functional in-
terpretation of the conditions under study, in terms of enriched
functional categories. This is particularly the case when per-
forming differential expression analysis based on transcriptome
data, and a plethora of tools have been developed to turn lists of
DEGs into functional categories or pathways mostly affected by
the changes. In the case of ChIP-seq, similar questions can be
asked, by looking at genes that are potentially affected by

960 | Steinhauser et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/17/6/953/2453197 by guest on 10 April 2024

Deleted Text: which 
Deleted Text: Since 
Deleted Text: very 
Deleted Text:  
Deleted Text: In order 
Deleted Text: s
Deleted Text: -
Deleted Text: in order 
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv110/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv110/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv110/-/DC1
Deleted Text:  
Deleted Text: -
Deleted Text: very 
Deleted Text: -
Deleted Text: more than 
Deleted Text: -
Deleted Text: very 
Deleted Text:  or more
Deleted Text: due 
Deleted Text: p
Deleted Text: differential regions
Deleted Text: -
Deleted Text: , 
Deleted Text: -
Deleted Text:  
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: Since 
Deleted Text: -
Deleted Text: very 
Deleted Text: ,
Deleted Text: differential regions
Deleted Text: which 
Deleted Text: ,
Deleted Text: -
Deleted Text: Jaccard index
Deleted Text: st
Deleted Text: very 
Deleted Text: in order 
Deleted Text: differentially expressed gene


differential binding sites or enriched regions, thus generating
biological hypothesis about affected biological processes.
Assigning a gene to a genomic region, however, introduces an
additional uncertainty, as regulatory regions, for example, can
act over large distance [35]. Various approaches have been pro-
posed to make the assignment more accurate, based e.g. on
published interaction data sets or looking at the correlation be-
tween the ChIP signal and the expression of surrounding genes
[36–38]. However, we still expect that for most of the cases,
relating a differential peak to the closest gene(s) will be a rea-
sonable proxy, especially if the differential region lies close to
gene promoters. If expression data are available for the same
condition, one can compare the two differential data sets (ex-
pression and ChIP binding/enrichment) and validate to what

extent the biological interpretation based on differential expres-
sion and differential enrichment are compatible. In this section,
we used the DR obtained in the first section, and performed
functional enrichment of the detected regions for each of the
tools. This adds an additional layer of validation. Indeed, irre-
spective of whether DR overlap, if they lie in proximity to the
same genes, the biological interpretation will be similar. We
made the assumption that FoxA1 represents a transcriptional
activator, hence the direction of the differential ChIP enrich-
ment and the differential expression should be the same.

First, we checked if the DEGs can be recovered from the DR.
As a negative control, we used housekeeping genes (HKG) that
are not differentially expressed. For each tool, we ranked the DR
according to their significance, and assigned to each DR the

Figure 4. Proportion of true and false positives for each tool on the simulated FoxA1 data set (A, B) and H3K36me3 data set (C, D). The percentages in the legend indicate

the level of downsampling performed. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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closest gene, up to 1000 genes. Using these rankings, we com-
puted the enrichment of DEG versus HKG using a NES, which
represents a normalized version of the AUC (see ‘Methods’ sec-
tion). We compared the performance of the tools with a naive
approach, consisting in ranking the genes according to their
log-fold enrichment on the gene body (H3K36me3) or on the
promoter (FoxA1 and H3K27ac). The results are shown in
Supplementary Figure S4 for the FoxA1,H3K36me3 and H3K27ac
data sets. As noticed previously, some tools have a low number
of DR and therefore associate to a small number of genes.
Overall, most of the tools show a good performance in recover-
ing DEG from DR for FoxA1, better than the naive approach
based on promoter enrichment alone, possibly reflecting the
fact that FoxA1 also binds outside of promoters and acts over
longer distances. Somewhat unexpectedly, the results are worse
for the H3K36me3 data set, especially for DR enriched in the
TKO condition. Here, the tools from the single-replicate pipeline
show particularly poor performance, as can be seen from the
small difference in NES score between the DEG and the HKGs.
Most tools, however, perform better than the naive approach,
which seems to indicate that small differences in the enrich-
ment, possibly restricted to a portion of the transcript, are better
captured by the tools. For H3K27ac, the performance of most
tools is good, with some unexpected behaviors: for one of the
conditions, we note again the difference between the DESeq,
DESeq2 and edgeR algorithms implemented in diffBind, possibly
reflecting the different normalizations applied and the greater
stringency of the original DESeq algorithm.

Next, we asked whether the sets of DR would lead to similar
biological interpretations. For each method, as previously, we
selected the first 1000 genes that were nearby a DR (DR were
ordered by decreasing significance). We submitted the pro-
moters of these genes to GREAT, and collected for each tool the
top 3 enriched functional terms, and displayed the union of
these terms over all tools in a heatmap. As a gold standard, we

also performed the same analysis using the set of DEGs, by sub-
mitting their promoter to GREAT.

Comparing the output for each set of tool (Figure 6A and B), we
observe a good consistency between the tools for some terms such
as ‘response to hormone stimulus’, which is also found among the
DEG. Most tools indeed show enrichment for these terms, except
the tools from the single-replicate/EROI group (Manorm, QChIPat)
and PePr.For QChIPat, and this can be explained by the low number
of DR and hence the small set of affected genes. The functional en-
richments obtained from the DR do not necessarily correspond to
the terms obtained from the DEG, with, for example, ‘epithelial cell
development’ being highly enriched among the DR of many tools,
but showing only a minor enrichment among the DEG. Given that
FoxA1 has been described as being involved in epithelial lung cell
differentiation [39], the presence of this term makes sense in this
context. It is striking that the approaches from the single replicate
with external regions of interest show a clear depletion in enrich-
ments; while this can be explained by the small number of DR re-
turned by QChIPat, this is more surprising for MAnorm. It also
highlights that the naive approach based on taking the unique
peaks in each condition also fails to find most of the interesting
functional enrichments.

Discussion and conclusion

We have performed a comprehensive comparison of a large
number of tools developed for the detection of differentially en-
riched regions from ChIP-seq experiments. As ChIP-seq is a
widely applicable method and can target many transcription
factors or epigenetic modifications, the type of signal is diverse,
and makes the detection of DR a challenging task. Hence, we
would not expect that these tools be universally applicable to
any type of ChIP-seq, from transcription factor ChIP to broad
histone modifications such as H3K36me3 or H3K27me3. Indeed,
several of the tools we have included in this study have been

Figure 5. JI (y-axis) and recall (x-axis) for the tools in the single replicate (left column) and multiple-replicate pipeline (right column) for the FoxA1 (A, B) and H3K36me3

(C, D) simulated data sets. We make the distinction between tools that require external regions of interest (EROI) and those that determine them internally (IROI). A col-

our version of this figure is available online at BIB online: https://academic.oup.com/bib.
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specifically designed for either of these data sets; MultiGPS, for
example, is specifically designed for transcription factors, while
tools such as diffReps or RSEG have been developed to detect
differential histone modifications and indeed show poor

performances on the transcription factor data set. Hence, these
tools cannot be used universally. On the other hand, most other
tools appear to be applicable in both cases, in particular if an ex-
ternal set of regions of interest is provided. We have

Figure 6. Functional enrichment obtained by a GREAT analysis on the sets of DR and using the promoters of the DEG as a baseline. Shown heatmaps are based on DR

derived from FoxA1 E2- and Veh-treated data sets. Stars indicate tools for which <1000 genes were available in either condition. The arrows highlight terms discussed

in the text. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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summarized in Figure 7 and Supplemental Table S1 the main
characteristics of the tools, and this can be used as a guide for
selection of a tool specifically suited for a particular application.

The proper choice of the algorithm also depends on the
types of questions: if the study is primarily gene centric, i.e.
aims at identifying genes in the vicinity of the DR to derive a
biological interpretation based on the annotation of the genes,
the tools offer rather consistent results, as is shown from the re-
covery analysis of DEG and the analysis of term enrichments
using tools such as GREAT. On the other hand, if one is more
interested in chromatin organization and dynamics on treat-
ment, and focuses on the properties of the differential enriched
regions (such as size, exact localization, etc . . . ), then the differ-
ences in the tools will have a huge impact on the results.
Similarly, any analysis that focuses on enriched motifs within
the DR is also sensitive to the proper definition of the DR, as any
over-estimation of the size of the DR will decrease the signal-to-
noise ratio and result in less accurate motif inference. For ex-
ample, SICER, even with the parameters recommended for TF
binding, yields large regions, which might introduce a high level
of noise for motif analysis. A similar problem arises in single-
condition peak calling for ChIP-seq, for which differences in
peak properties impact the accuracy of motif discovery.

Each tool involves several ad hoc filtering steps, with the
number of tunable parameters being often substantial. In this
analysis, scanning the full parameter space for all tools over all
data sets was beyond our scope. Of course, we cannot exclude
that some results would have differed if, for example, the devel-
opers of the individual tools would have optimized the param-
eters using their insight knowledge of their own tool. Figures 1C
and 2C show that the number of DR is more or less sensitive to
the choice of threshold, which should be taken into account
when using one or the other tool. This type of comparative stud-
ies is for example applied in the DREAM challenges or in a motif
discovery benchmark [40]. As we had no bias toward any of the
analyzed tools, we reasoned that a moderately expert user
would most likely rely on the recommendations and default par-
ameters suggested by the developers in the documentation of
the tool. Hence, we took this approach to determine the param-
eters that should be applied, and believe that this represents a

fair option for an unbiased comparison. For example, some tools
did report a limited number of DR. This is probably a conse-
quence of our parameter choice, and different results would
probably have been obtained using other values. However, this
also indicates that these tools do require optimization, and can-
not be used with the standard settings, whereas others give rea-
sonable results ‘out-of-the-box’ (Figure 7).

In the workflow from bam files down to list of DR, several
steps have a strong impact on the results: first, the tools differ
in their approach to define the regions to test for differential en-
richment. We can broadly categorize them into three categories,
with the exception of MultiGPS: (1) the tools that rely on an ex-
ternal set of regions provided by the user, generally based on
the output of a peak caller algorithm, (2) the tools that use a
fixed window-based approach to compare enrichments, and (3)
the tools that implement a hidden-Markov approach. Another
crucial point is the normalization of the data sets, either treat-
ment versus control or both treated data set against each other.
As indicated in Supplementary Table S1, the tools use different
normalization strategies, from the simple library size normal-
ization to more sophisticated approaches such as the SES
method. Recently, a publication has compared the impact of
normalization schemes on different data sets and shown differ-
ences especially when data sets are based on genomes with
chromosomal aberrations [41]. Most tools presented in this
study are based on normalization methods initially developed
for gene expression analysis with the underlying assumption
that only a small number of regions are truly differential.
However, this is not suitable in case of global epigenome
changes, e.g. owing to inhibition of epigenetic enzymes.
Therefore, a number of ChIP-seq protocols are now being pub-
lished using as internal experimental control a spiking-in of a
known amount of chromatin from a different species
(Drosophila melanogaster or Mus musculus) [42, 43]. This internal
reference allows to precisely determine a sample-specific nor-
malization factor and therefore enables a more robust genome-
wide quantitative comparison across samples.

However, in our comparison, the largest difference comes
from the availability of replicates. Tools that handle replicates call
a much smaller number of DR, and achieve a much better

Figure 7. Decision tree indicating the proper choice of tool depending on the data set: shape of the signal (sharp peaks or broad enrichments), presence of replicates

and presence of an external set of regions of interest. We have indicated in dark the name of the tools that give good results using default settings, and in gray the tools

that would require parameter tuning to achieve optimal results: some tools suffer from an excessive number of DR (PePr, ODIN-pois), an insufficient number of DR

(QChIPat, MMDiff, DBChIP) or from an imprecise definition of the DR for sharp signal (SICER, diffReps-nb). *MultiGPS has been explicitly developed for transcription fac-

tor ChIP-seq.
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precision, yet at the expense of the recall. Importantly, if multiple
replicates are available, they should be considered independently
using one of the multiple replicate tools, rather than pooled, as
the level of false positives is generally much lower for this cat-
egory, owing to the implementation of robust statistical tests. In
the absence of replicates, the user should be aware that most tools
in the single replicate category require extensive parameter fine-
tuning to achieve a good trade-off between precision and recall.

According to our results, it is crucial to generate replicate
ChIP-seq data sets when looking for differential enrichment, as
is now an established procedure when looking for DEGs from
RNA-seq data, to achieve a sufficient specificity.

Note that we have not here addressed the question of compar-
ing multiple conditions, as none of the tools presented here allow
this type of analysis. For that, novel methods need to be developed,
for example, based on an ANOVA testing of variable regions [44].

In conclusion, our study highlights the general lack of con-
sistency between the tools considered here, in terms of number
and location of DR. Depending on the biological focus, this
might yield substantially different interpretations. We therefore
recommend to use and compare several of these tools to obtain
a confident consensus set of DR, but most importantly our study
highlights the importance of generating biological replicates for
ChIP-seq, like what has become standard practice for RNA-seq.

Key Points

• Tools for differential ChIP-seq analysis show import-
ant differences in the number and size of detected
differential regions (DR).

• Methods taking into account replicates appear to be more
robust than those handling single replicate data sets.

• Inconsistent sets of DR will affect results based on se-
quence analysis, like detection of enriched transcrip-
tion factor binding sites.

• However, analysis of functional enrichments based on
neighboring genes appears to be more robust.

• Some tools give good results with default parameters,
like ChIPComp or diffBind when replicates are available,
or MAnorm, Homer, macs2bdgdiff and RSEG with single
replicates. The other tools would require more extensive
fine-tuning of parameters to achieve satisfactory results.
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Supplementary data are available online at https://academic
.oup.com/bib.
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